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Abstract

We study the C*-algebras and von Neumann algebras associated with the universal
discrete quantum groups. They give rise to full prime factors and simple exact C*-
algebras. The main tool in our work is the study of an amenable boundary action,
yielding the Akemann-Ostrand property. Finally, this boundary can be identified with
the Martin or the Poisson boundary of a quantum random walk.
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0. Introduction
Since Murray and von Neumann introduced von Neumann algebras, the ones asso-
ciated with discrete groups played a prominent role. The main aim of this article is
to show how concrete examples of discrete quantum groups give rise to interesting
C*-algebras and von Neumann algebras.

In the 1980s, Woronowicz [29] introduced the notion of a compact quantum
group and generalized the classical Peter-Weyl representation theory. Many fascinating
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examples of compact quantum groups are available by now. Drinfel’d [10] and Jimbo
[15] introduced the g-deformations of compact semisimple Lie groups, and Rosso [19]
showed that they fit into the theory of Woronowicz. The universal orthogonal and
unitary quantum groups were introduced by Van Daele and Wang [25] and studied in
detail by Banica [3], [4]. Large classes of compact quantum groups arise as symmetry
groups (see, e.g., [28]).

This article mainly deals with the universal orthogonal quantum group G =
A,(F), defined from a matrix F € GL(n, C) satisfying FF = =1. Its underlying
C*-algebra C(G) is the universal C*-algebra generated by the entries of a unitary
(n x n)-matrix (U;;) satisfying (U;;) = F(U;;.)F’l. Using the Gel fand-Naimark-
Segal (GNS) construction of the (unique) Haar state of (G, we obtain the reduced
C*-algebra C(G);eq and the von Neumann algebra C(G);,,. This article deals with a
detailed study of these operator algebras. Note that for n > 3, C(G),eq is a nontrivial
quotient of C () by nonamenability of the discrete quantum group G.

In Section 3, we construct a boundary for the dual @ of G = A,(F). This
boundary %, is a unital C*-algebra that admits a natural action of G. In Section 4, we
introduce the notion of an amenable action of a discrete quantum group on a unital C*-
algebra. This definition involves a nontrivial algebraic condition, which is the proper
generalization of Anantharaman-Delaroche’s centrality condition (see [1, Théoreme
3.3]). We then prove that the boundary action of G is amenable. The construction of
the boundary %, and the proof of the amenability of the boundary action involve
precise estimates on the representation theory of A,(F). These estimates are dealt
with in the appendix.

From the amenability of the boundary action of the dual of G = A,(F), we
deduce that the reduced C*-algebra C(G).q is exact and satisfies the Akemann-
Ostrand property. In the setting of finite von Neumann algebras, Ozawa [18] showed
that the Akemann-Ostrand property implies solidity of the associated von Neumann
algebra. Since, in general, C(G),., is of type III, we need a generalization of Ozawa’s
definition (see Section 2), and we deduce that for G = A,(F), the von Neumann
algebras C(G)/, are generalized solid. In particular, for F the n x n identity matrix,
we get a solid von Neumann algebra.

In Section 5, we make the link between our boundary %, for the dual of
G = A,(F) and boundaries arising from quantum random walks on G. First,
we construct a harmonic state w., on %, and identify the von Neumann algebra
(B, wso)" With the Poisson boundary of a random walk on G. Note that Poisson
boundaries of discrete quantum groups were defined by Izumi [13], who computed
them for the dual of SU,(2). This computation was then extended to the dual of
SU,(n) in [14]. A recent preprint of Tomatsu [21] provides a computation for the
Poisson boundary of the dual of an arbitrary g-deformed compact Lie group. Second,
we identify the C*-algebra 4., with the Martin boundary of a random walk on G.
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Note that Martin boundaries of discrete quantum groups were defined by Neshveyev
and Tuset [17] and computed there for the dual of SU,(2). Based on the results of our
article and [13], the Poisson and Martin boundaries for G are identified in [23] with
concrete von Neumann and C*-algebras, given by generators and relations.

In the short Section 6, we provide a general exactness result for quantum group
C*-algebras C(G).q. We show that for monoidally equivalent quantum groups G
and G (see [6]), C(G),q is exact if and only if C(G).q is exact. This provides an
alternative proof for the exactness of C(G),.q when G = A,(F) and proves exactness
in other examples as well.

In Section 7, we deal with factoriality of the von Neumann algebra C(G);.,
and simplicity of the C*-algebra C(G),q whenever G = A,(F) and F is at least a
(3 x 3)-matrix. We were only able to settle factoriality and simplicity assuming an
extra condition on the norm of F. If /5 | F||> < Tr(F*F), the von Neumann algebra
C(G), is a full factor and we compute its Connes invariants. If 8|| F||® < 3 Tr(F*F),
the C*-algebra C(G),eq is simple. Both conditions are satisfied when F is sufficiently
close to the n x n identity matrix for n > 3. Moreover, it is our belief that they are
superfluous. Note that simplicity of the reduced C*-algebra of the universal unitary
quantum groups A, (F) was proved by Banica [4]. For G = A, (F), the fusion algebra
can be described using the free monoid N * N, while for G = A,(F), the fusion
algebra is the same as that of SU(2) and is, in particular, abelian. For that reason,
Banica’s approach is closer to Powers’s proof of the simplicity of C’(IF,,).

For the convenience of the reader, we included a rather extensive section of
preliminaries, dealing with the general theory of compact/discrete quantum groups,
their actions on C*-algebras, and exactness.

1. Preliminaries

We use the symbol ® to denote several types of tensor products. In particular, ®
denotes the minimal tensor product of C*-algebras. The maximal tensor product is
denoted by ®.x. If we want to stress the difference with the minimal tensor product,
we write ®,;,. We also make use of the leg numbering notation in multiple tensor
products. If a € A ® A, then ay», a3, ax; denote the obvious elementsin A @ A ® A
(e.g,ap=a®1l).

Compact quantum groups
We briefly overview the theory of compact quantum groups developed by Woronowicz
[29]. We refer to the survey article [16] for a smooth approach to these results.

Definition 1.1
A compact quantum group G is a pair (C(G), A), where
. C(G) is a unital C*-algebra;
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. A C(G) - C(G)® C(G) is a unital *-homomorphism satisfying the
coassociativity relation

(A ®@iIdA = ((d® A)A;
o G satisfies the left and right cancellation properties expressed by

A(C(G))(1 ® C(G)) and A(C(G))(C(G) ® 1) are total in C(G) ® C(G).

Remark 1.2

We use the fancy notation C(G) to suggest the analogy with the basic example given
by continuous functions on a compact group. In the quantum case, however, there is
no underlying space G, and C(G) is a nonabelian C*-algebra.

The two major aspects of the general theory of compact quantum groups are the
existence and uniqueness of a Haar measure and the Peter-Weyl representation theory.

THEOREM 1.3

Let G be a compact quantum group. There exists a unique state h on C(G) satisfying
((d ®h)A(a) = h(a)l = (h ® id)A(a) for all a € C(G). The state h is called the
Haar state of G.

Definition 1.4
A unitary representation U of a compact quantum group G on a Hilbert space H is a
unitary element U € M(# (H) ® C(G)) satisfying

(d®A)U) = U Us. (1.1)

Whenever U'! and U? are unitary representations of G on the respective Hilbert spaces
H, and H,, we define

Mor(U', U?) :={T € B(H,, H)) | U(T ® 1) = (T ® HU,}.

The elements of Mor(U', U?) are called intertwiners. We use the notation End(U) :=
Mor(U, U). A unitary representation U is said to be irreducible if End(U) = CI.
Two unitary representations U' and U? are said to be unitarily equivalent when
Mor(U', U?) contains a unitary operator.

The following result is crucial.
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THEOREM 1.5
Every irreducible representation of a compact quantum group is finite dimensional.
Every unitary representation is unitarily equivalent to a direct sum of irreducibles.

Because of this theorem, we almost exclusively deal with finite-dimensional represen-
tations, the regular representation being the exception. By choosing an orthonormal
basis of the Hilbert space H, a finite-dimensional unitary representation of G can be
considered as a unitary matrix (U;;) with entries in C(G), and (1.1) becomes

AU ) = Z Uit ® Uy;.
P

The product in the C*-algebra C(G) yields a tensor product on the level of unitary
representations.

Definition 1.6
Let U' and U? be unitary representations of G on the respective Hilbert spaces H,
and H,. We define the tensor product

U'®U? :=U\LUy, e M (A (H, ® Hy) @ C(G)).

Notation 1.7
We denote by Irred(G) the set of (equivalence classes) of irreducible unitary represen-
tations of a compact quantum group G. We choose representatives U* on the Hilbert
space H, for every x € Irred(G). Whenever x, y € Irred(), we use x ® y to denote
the unitary representation U* @ U”. The class of the trivial unitary representation is
denoted by ¢.

The set Irred(G) is equipped with a natural involution x + X such that U” is the
unique (up to unitary equivalence) irreducible unitary representations such that

Mor(x ® X, €) # 0 £ Mor(x ® x, ¢).

The unitary representation U~ is called the contragredient of U~.

The irreducible representations of G and the Haar state & are connected by the
orthogonality relations. For every x € Irred(G), we have a unique invertible positive
self-adjoint element Q, € B(H,) satisfying Tr(Q,) = Tr( Q;l) and

: Tr(Q.A)

(d®m(U*(A® NUY) = ——=—1,
N

(d® (U (A® DUY) = —2——1

Tr(Q;H)
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forall A € B(H,).

Definition 1.8

For x € Irred(G), the value Tr(Q,) is called the quantum dimension of x and is
denoted by dim, (x). Note that dim,(x) > dim(x) with equality holding if and only if
O,=1

Discrete quantum groups and duality
A discrete quantum group is defined as the dual of a compact quantum group, putting
together all irreducible representations.

Definition 1.9
Let G be a compact quantum group. We define the dual (discrete) quantum group G
as follows:

@G = P BH.

xelred(G)

G = [] B&H.

x€lrred(G)

We denote the minimal central projections of E"O(@) by p,, x € Irred(G).
We have a natural unitary V € M(co(G) ® C(G)) given by

V= @ U*.

xelred(G)

The unitary V implements the duality between G and G. We have a natural comulti-
plication

A2 = 2GR 2G) : (A @ id)(V) = V3Vas.

The notation introduced above is aimed to suggest the basic example where G is
the dual of a discrete group I', given by C(G) = C*(T") and A(A,) = A, ® A, for
all x € I'. The map x +> A, yields an identification of I" and Irred(G), and then
=(G) = ().

Remark 1.10

It is, of course, possible to give an intrinsic definition of a discrete quantum group
(not as the dual of a compact quantum group). This was already implicitly clear in
Woronowicz’s work and was explicitly done in [11] and [24]. For our purposes, it is
most convenient to take the compact quantum group as a starting point. Indeed, all
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interesting examples of concrete discrete quantum groups are defined as the dual of
certain compact quantum groups. We present one particular class at the end of this
section.

The discrete quantum group ZO"(@) comes equipped with a natural modular structure.

Notation 1.11

We choose unit vectors ¢, € H, ® Hx invariant under U* ® U*. The vectors ¢, are
unique up to multiplication by T. We then have canonically defined states ¢, and v,
on B(H,) related to (1.2) as follows:

YA = (A ® lyry = 2 A) (id®h)(U*(A ® DU
A OOy ’
and
. _ QA oy .
P(A) =51 @ Atz = ™0 = (id®h) (U (A ® HUY),

for all A € B(H,). As a complement to the vectors 7., we also choose unit vectors
sy € Mor(x ®x, ) normalized such that (s} ® 1)(1 ® t5) = 1/dim,(x) for all
x € Irred(G). In certain examples, one can consistently choose s, = ., but this is not
always the case.

The states ¢, and , are significant since they provide a formula for the invariant
weights on £°(G).

PROPOSITION 1.12
The left-invariant weight hy and the right-invariant weight hg on G are given by

hy= Y dimg@)?y,  and  hp= Y dim,(x) g,

xelred(G) x€lrred(G)

The following formula is used several times in the article.

PROPOSITION 1.13
Letx, y € Irred(G), and suppose that pt®” € End(x ® y) is an orthogonal projection
onto a subrepresentation equivalent with z € Irred(G). Then

dim,(z)

. R Y — Dl A—
(id @y, )(pI®) = dim, (x) dim, (y)

and

. XYY __ M
(0 ® 1d)(p}®") = dim, (x) dim, (y)
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Proof

Since (id ®y,)(p}®") = (1 ® 1})(pi® ® 1)(1 ® t,) € End(x) = Cl, it suffices
to check that (¥, ® ¥, )( p;f@y ) = dim,(z)/(dim,(x) dim,(y)), which immediately
follows from the formula (Q, ® Q)T =T Q,forall T € Mor(x ® y, z). a

Regular representations
Both the algebras C(G) and co(@) have two natural representations on the same
Hilbert space.

Using (1.2), we canonically identify the GNS Hilbert space L?(C(G), k) with

LG):= P (H:® Hy

x€elrred(G)

by taking

p: CG) = B(LX(G)) : p((wye ® id)U))é =& ® (1 ® )i,

1.3
11 C@) > B(LAG)) : M(wye ® iU = (1 @ 1 )c @8, )

for all x € Irred(G) and all &, n € H,. Here, & denotes the canonical unit vector in
H, ® H, = C. We use the notation w, ¢(a) = (1, a€), and we use inner products that
are linear in the second variable.

Notation 1.14

Let G be a compact quantum group with Haar state 1. We denote by C(G),eq the
C*-algebra p(C(G)) given by the GNS construction for 2. We denote by C(G).., the
generated von Neumann algebra.

The aim of this article is a careful study of C(G),q and C(G).,, for certain concrete
examples of compact quantum groups. The previous paragraph clearly suggests that
these algebras are the natural counterparts of C*(I') and £ (I') for a discrete group I'.

We introduce the left- and right-regular representations for G and G. For the

convenience of the reader, we provide several explicit formulas.

Definition 1.15
The right-regular representation ¥ € Z(L*(G) ® C(G)) of G and the left-regular
representation # € #(C(G) ® L*(G)) are defined as

Y (p@k @ 1) = ((p ® id)A@)) (& @ 1),
W (18 p(a)k) = (([d®p)A@)(1 ® &).

Recall that V € M(co(@) ® C(G))is givenby V = @xelned(G) U*.
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Notation 1.16
We define

% 62(G) - B(LXG)) : Ma), = (a, ® g, foralla € €(G), &, € H, ® Hs,
7 :0°@) = B(LXG)) : p(@)t =(1 @ ap)g, foralla € ¢3(G), &, € H, ® Hs.

We define the unitary u € B(L*(G)) by u(§ ® n) = n Q& for& € H,, n € Hy. Note
that = (Adu)A and u?> = 1.

PROPOSITION 1.17
The left- and right-regular representations of G are given by

= @id(V) and W =(id @P)(Va).

So, as it should be, the left- and right-regular representations of G give rise to two
commuting representations of KOO(@). We now symmetrically and explicitly write
down how the left- and right-regular representations of G give rise to two commuting
representations of C(G) (see Proposition 1.20).

We explicitly perform the GNS construction for the weights 71\L and ER (see Propo-
sition 1.12) in order to give formulas for the left- and right-regular representations of
G. Recall the choice of unit vectors s, made in Notation 1.11.

Notation 1.18
Let a € £°((G). We define, whenever the right-hand side makes sense,

Al@y= ) dimy(x)(ap; ® s,

xelred(G)

and

Ar(@)= Y dim,(x)u(l ®ap,)ss.

xelred(G)

The maps A ;. and A R» together with the representation P Zm(@) — B(L*(G)),
provide a GNS construction for h . and h R, respectively.

Definition 1.19
The left-regular representation # € % (co(G) ® L*(G)) and the right-regular repre-
sentation ¥ € L(L*(G) ® cy(G)) are defined as

P (108 (@) =G ®A)AW@ and ¥ (Ap@)® 1) = (Ar ® id)Aa),

foralla € Z"Q(@) where KL(a) (resp., KR(a)) makes sense.
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PROPOSITION 1.20
The left- and right-regular representations of G are given, respectively, by

W =Gd@p)V) and ¥ =O®id)(Va),

and p = (Adu)\. In particular, the C*-algebras M(C(G)) and p(C(G)) commute
with each other.

Remark 1.21

Our notation and conventions agree with those of Baaj and Skandalis [2] in the
following way. We consider p as the canonical representation of C(G) and A as the
canonical one for co(@). If we then write V = (/): ® p)(V) = (id®p)(¥), the
operator V is a multiplicative unitary on L*(G). Together with the unitary u, V is
irreducible in the sense of [2, Définition 6.2], and the corresponding multiplicative
unitaries of [2] are given by

V=(p®pWVy) and V=GNV

Actions and crossed products
We provide a brief introduction to the theory of actions of compact and discrete
quantum groups on C*-algebras (for details and proofs, see [2]).

Definition 1.22
A (right) action of a compact quantum group G on a C*-algebra A is a nondegenerate
*-homomorphism

a:A—>M(A®C(G)) satisfying (¢ ® id)e = (id @A)

and such that «(A)(1 ® C(G)) istotal in A ® C(G).

The crossed product A x G is defined as the closed linear span of
(id®p)a(A) (1 ® X(CQ(G))) and is a C*-algebra. Observe that A X G is realized
as a subalgebra of Z(A ® L*(G)).

Note that because of amenability of G, there is no need to define full and reduced
crossed products.

Remark 1.23
The action o of a compact quantum group on a unital C*-algebra A is said to be
ergodic if

a(a) =a® 1 ifandonlyif a € Cl.
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For ergodic actions of compact quantum groups, the usual theory of spectral subspaces
is available. In particular, one defines the multiplicity with which an irreducible
representation x € Irred(G) appears in an ergodic action. We need this notion at one
place in the article and refer to [6, Introduction] for details.

Definition 1.24
A (left) action of a discrete quantum group G on a C*-algebra A is a nondegenerate
*-homomorphism

a:A— M(oG)®A) satisfying (id® e = (A ® id)

and such that (¢ ® id)a(a) = a foralla € A.

Since G need not be amenable, we introduce the notions of a covariant representation,
full crossed product, and reduced crossed product.

Definition 1.25

Leta : A — M(co(@) ® A) be an action of a discrete quantum group G ona C*-
algebra A. A covariant representation of (A, ) into a C*-algebra B is a pair (6, X),
where 6 : A — M(B) is a nondegenerate *-homomorphism and X € M(co(@) ® B)
is a unitary representation of G satisfying the covariance relation

([d®6O)a(a) = X*(1®0(a)X foralla € A.

PROPOSITION 1.26

Letox : A — M(co(@) ® A) be an action of a discrete quantum group Gona
C*-algebra A.
J For any covariant representation (6, X) of (A, ), the closed linear span of

0(A) (0 @ id(X)|w € £2(G),}

isa C*-algebra: the C* algebra generated by (0, X).

. The reduced crossed product (G X A isthe C*-algebra generated by the regular
covariant representatlon into (L*(G) ® A) given by ((X ® id)a, 7/12)
o The full crossed product G £ X A is the unique (up to isomorphism) C*-algebra

B generated by a covariant representation (0, X) into B satisfying the follow-
ing universal property: for any covariant representation (6, X,) into a C*-
algebra By, there exists a nondegenerate *-homomorphism & : B — M(B)
satisfying 0y = w6 and X, = (id @ )(X).
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Exactness
Recall that a C*-algebra A is said to be exact if the operation A ®, - transforms
short exact sequences into short exact sequences.

Definition 1.27
A discrete quantum group G is said to be exact if the operation G, i - transforms
G-equivariant short exact sequences into short exact sequences.

The following proposition is proved using a classical trick.

PROPOSITION 1.28
A discrete quantum group G is exact if and only if C(G)q is an exact C*-algebra.

Proof
One implication is obvious by applying the definition of exactness of G to short exact
sequences equivariant with respect to the trivial action of G.

So, suppose that C(G)yeq is an exact C*-algebra, and suppose that 0 — J —
A— A/ J — 0isaG- equivariant short exact sequence. Denote by 4, (resp 84) the
actions of G on J (resp., A). For any C*-algebra B with an action § of G on B, we
have a canonical injective *-homomorphism

3:G,x B— C(G)rg ® Gy x B),

which is a form of the dual action of G on the crossed product. Observe that at the
right-hand side, the full crossed product appears. Consider the commutative diagram

0 GexJ GxA Gx4d—0

b b 1

0 —> CG)ea ® Gt X J) —> C(G)rea ® Gt X A) —> C(G)rea ® Gy x 4) —> 0
min min min

By universality, the sequence 0 — @f X J — @f X A — @f X A/J — 0 is exact.
So, by exactness of C(G)yeq, the bottom row of the commutative diagram is exact.
Suppose that a € G X A becomes zero i in (G x A/J. Since the bottom row of the
diagram is exact, B (@) € C(G)req ®min (Gf x J). Using an approximate identity (e, )
for J, it is easy to check that 3, (ea)gA(a) — §4(a). Since ’8\A is isometric, it follows
that e,a — a, and hence, a € @r x J. This proves the exactness of the top row in the
diagram. |

Examples: The universal compact quantum groups
The universal compact quantum groups were introduced by Van Daele and Wang [25].
They are defined as follows.
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Definition 1.29
Let F € GL(n, C). We define the compact quantum group G = A, (F) as follows:

J C(G) is the universal C*-algebra with generators (U;;) and relations making
U = (U;;) and FUF~" unitary elements of M, (C) ® C(G), where (U),;; =
U*,

ij*

. AWU;j) =), Uy ® Uy;.

Definition 1.30
Let F € GL(n, C) satisfying FF = =+1. We define the compact quantum group
G = A,(F) as follows:

o C(G) is the universal C*-algebra with generators (U;;) and relations making
U = (U;;) a unitary element of M,,(C) ® C(G) and U = FUF~', where
W) =Uj;

. AWU;j) =, Ui ® Uy,

In both examples, the unitary matrix U is a representation, called the fundamental
representation. The definition of G = A,(F) makes sense without the requirement
FF = =1, but the fundamental representation is irreducible if and only if FF € R1.

Remark 1.31

It is easy to classify the quantum groups A,(F). For F;, F, € GL(2, C) with FiF; =
+1, we write F; ~ F, if there exists a unitary matrix v such that F; = vF,v’, where
v’ is the transpose of v. Then A,(F;) = A,(F,) if and only if F| ~ F,. It follows that
the A,(F) are classified up to isomorphism by 7, the sign FF, and the eigenvalue
list of F*F (see, e.g., [6, Section 5], where an explicit fundamental domain for the
relation ~ is described).

If F € GL(2, C), we get, up to isomorphism, the matrices

e (0 va
q_:FLO
NG

for 0 < g < 1 with corresponding quantum groups AD(Fqi) = SUL,(2).

For the rest of the article, we assume that F + F, which means that we deal
neither with the classical group SU(2) nor with SU_;(2). Generally speaking, our
interest lies in A,(F) with dim F' > 3.

The quantum groups A, (F) and A,(F) have been studied extensively by Banica [3],
[4]. In particular, he gave a complete description of their representation theory. In the
rest of the article, we focus on A,(F). The following result is proved in [3]. It tells us
that A,(F’) has the same fusion rules as the classical compact group SU(2). Observe,
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however, that the dimension of the fundamental representation U is n. Conversely, it
is easy to see that any compact quantum group with the same fusion algebra as SU(2)
is isomorphic to an A,(F).

THEOREM 1.32
Let F € GL(n,C), and let FF = +1. Let G = A,(F). One can identify Irred(G)
with N in such a way that

XQy=E|x—yO(x—y[+2)® - D(x+y)

forallx,y € N.

It is easy to check that dim,(1) = Tr(F*F). Take 0 < ¢ < 1 such that Tr(F*F) =
q + 1/q. Then

dim,(n) = [n +1],, where[n], = %
p— q7
When there is no confusion, we do not write the index ¢ in the g-number [n],,.

Notation 1.33
Let G = A,(F), and let x,y € Irred(G). Whenever z € x ® y, we denote by
V(x ® y, z) an isometric element in Mor(x ® y, z). Note that V(x ® y, z) is defined
up to a number of modulus 1.

Whenever z € x ® y, we denote by pf®” the unique orthogonal projection in
End(x ® y) projecting onto the irreducible representation equivalent with z.

Throughout the article, the letters n, x, y, z, r, s are reserved to denote irreducible
representations of A,(F) (i.e., natural numbers). The letters a, b, c, . .. are used to
denote elements of C*-algebras. The capital letters A and B denote matrices.

2. Solidity and the Akemann-Ostrand property
In [18], Ozawa introduced the following remarkable definition. Recall that a von
Neumann algebra is said to be diffuse if it does not contain minimal projections.

Definition 2.1 (N. Ozawa [17, Section 1])
A von Neumann algebra M is said to be solid if M N A’ is injective for any diffuse
subalgebra A C M.

A solid von Neumann algebra is necessarily finite. The following definition is a
straightforward adaptation of solidity to arbitrary von Neumann algebras and has been
observed independently by D. Shlyakhtenko [20].
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From now on, we assume that von Neumann algebras have separable predual.

Definition 2.2

A von Neumann algebra M is said to be generalized solid if M N A’ is injective for
any diffuse subalgebra A C M for which there exists a faithful normal conditional
expectation E : M — A.

Several results in [18] can now be easily generalized. For the convenience of the reader,
we give an overview of what we need in this article. The first result is immediate.

PROPOSITION 2.3

We have the following:

J a finite von Neumann algebra is generalized solid if and only if it is solid;

. a subalgebra My C M of a generalized solid von Neumann algebra which
admits a faithful normal conditional expectation M — M is again generalized
solid;

. a noninjective generalized solid factor M is prime: if M = M, @ M,, then

either M, or M, is a type I factor.

The main result of [18] consists in deducing solidity from the Akemann-Ostrand
property. Recall the following definition from [18].

Definition 2.4 ([18, Theorem 3])

A von Neumann algebra M C B(H) is said to satisfy the Akemann-Ostrand property
if there exist unital weakly dense C*-subalgebras B € M, C C M’ such that B is
locally reflexive and the *~-homomorphism

B ®u, C Ji”(H) Zb ®c; Zn(b ci)

extends continuously to B ®,;, C. Here, 7w denotes the quotient map B(H) — B(H)/
A (H).

The following generalization appears in [18, Theorem 6].

THEOREM 2.5
A von Neumann algebra M C B(H) satisfying the Akemann-Ostrand property is
generalized solid.

Proof
One follows almost line by line [18, proof of Theorem 6], paying attention only to
the fact that there are conditional expectations everywhere since they do not exist
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automatically on von Neumann subalgebras (contrary to the finite case). Suppose that
A C M is diffuse, and suppose that £ : M — A is a faithful normal conditional
expectation. Choose on A a faithful state ¢ so that the centralizer algebra A” has a
diffuse abelian subalgebra Ay C A?. This is indeed possible, the most difficult case
of A atype III; factor being dealt with in [9, Corollary 8].

Write v = @E. Since there is a y-preserving conditional expectation M N Ay —
M N A', it is sufficient to show that M N A} is injective. Because there is a unique
Y -preserving conditional expectation M — M N Ay, [18, proof of Theorem 6] applies
literally. O

On the level of compact quantum group C*-algebras, we have the following version
of the Akemann-Ostrand property.

Definition 2.6
Let G be a compact quantum group. We say that G satisfies the Akemann-Ostrand
property if the *-homomorphism

B(LXG)) Z

HIAC) a; @ b; — Zﬂ()»(ai),o(bi))

i=1 i=1

C(G)red ®alg C(G)red -

extends continuously t0 C(G)req ®min C(G)eq. Here, 7 denotes the quotient map
B(L*(G)) — B(L*(G))/ A (L*(G)).

Obviously, if G satisfies the Akemann-Ostrand property and C(G),oq is locally re-

4

flexive, the von Neumann algebra C(G).,

satisfies the Akemann-Ostrand property as
well and is, by Theorem 2.5, a generalized solid von Neumann algebra.

3. Boundary and boundary action for the dual of A,(F)
Fix F € GL(n, C) with FF = 1. Put G = A,(F). Recall that we assume that
G 2 SU4(2). Recall that we identify Irred(G) = N, and recall that we use the letters
n,x,y,z,r,s to denote irreducible representations of G.

We introduce a boundary for @, inspired by the construction of the boundary of
a free group by adding infinite reduced words. So, we first define a compactification
of @, which is a unital C*-algebra % such that

@) c B c 1=°@G).

The boundary % is then defined as %, = %/ co(@).
We show that the comultiplication A yields, by restriction and passage to the
quotient #, = Q/CO(@),
U an action of @ on %+ on the left-hand side;
d the trivial action of G on A~ on the right-hand side.



BOUNDARY ACTIONS OF DISCRETE QUANTUM GROUPS 51

In the next section, we introduce the notion of an amenable action and prove that the
boundary action is amenable.

If one compactifies a free group I" by adding infinite words, a continuous function
on this compactification is an element of £*°(I") whose value in a long word of I"
essentially depends only on the beginning part of that word. In order to give, somehow,
the same kind of definition for G the dual of A,(F), we need to compare the values
that an element of ZOO(([A}) takes in two different irreducible representations. So, we
compare matrices in B(H,) and B(H,) for x,y € Irred(@). To do so, we use the
following linear maps.

Definition 3.1
Let x, y € N. We define unital completely positive maps

W)Hry,x : B(Hx) - B(Hx+y) : w.ery,x(A) = V(x®y, X+Y)*(A® I)V(x ®y’ X‘H’)

Recall that we have chosen isometric intertwiners V(x ® y, z) € Mor(x ® y, z).

PROPOSITION 3.2
The maps vy « form an inductive system of completely positive maps.

Proof
Since Mor(x + y + z, x ® y ® z) is one-dimensional, we have

(Va®y,x+»@)V(x+y)®z,x+y+2)
=(1Vhy®z,y+2))V(x®(y+2),x+y+z) modT.

So, we are done. O

Notation 3.3
We define

Yyx(A) ify > x,
0 otherwise.

woo,x :B(H,) — Zoo(@) : woo,x(A)py - {

We use the same notation for the map ¥, : B(H,) — E""(@) / CO(@). Recall that p,
denotes the minimal central projection in £°°(G) associated with x € Trred(G).

PROPOSITION 3.4
Define

By = {a € Zw(@) | there exists x such that ap, = ¥, ((apy) forall y > x}.
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The norm closure of Ay is a unital C*-subalgebra of E‘X’(@) containing co(@). We
denote it by B. The C*-algebra A is nuclear.

Proof
It follows from (A.1) that there exists a constant C such that

I[(Wers (A @ 1), pSE0E | < CqP 1Al

for all x, y, zand A € B(H,). Hence,

[¥isytznsy (Watyx (A B) = Yesyie (A Viyie s (B)]| < CqllA|l || B

forallx, y,z,A € B(H,)and B € B(H,,). We easily conclude that the norm closure
4 is a unital C*-subalgebra of KW(@). It obviously contains co(@).

Define B, = @ﬁ:o B(H,), define u, : 4 — B, by restriction, and define
Vu @ By — 2 by the formulas y,(a)p, = ap, if x < n and y,(a)px = V¥ .(ap,) if
x > n. Then y,(u,(a)) — a for all a € 4, and the nuclearity of 4 is proved. O

Notation 3.5
The comultiplication A yields a (left) action of G on the C*-algebra £°°((G) which we
denote by

B @) - M (co(G) ® £*(G)).

PROPOSITION 3.6 R R
We have B(#) C M(co(G) ® %), and as such, B is an action of G on 4.

Proof
It suffices to show that (p, ® 1)B(a) € B(H,) ® % for all a € # and x € N. Take
a = Ys,(A). Take y > x + r, and take z. Then

(P ® pyr)Bx) = D V(x®(y+2).5+2) (ap) V(x @ (y +2). s +2)".

SEXRy
Fixans € x ® y. Observe that ap,., = ¥4, (¥, -(A)). Using (A.3), we get
[V @y +2).s42)(@p) V(x ® (v +2).5 +2)°
— (A @ Yyizy) (VX @ y, )Y (AV(x ® y, )| < Cq Al

Wekeepx and A € B(H, ) fixed. Choose ¢ > 0. Take y suchthat (x+1)Cqg || A| <
¢. Since there are less than x 4 1 irreducible components of x ® y, the computation
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above shows that (p, ® 1)B(a) is at distance at most ¢ of

(i @) D V@Y, i (V@ . 5)).

SEXR®Y

Hence, (p, ® 1)B(a) € B(H,) ® 4. O

Definition 3.7
We define B+, := %B/co(G), and we still denote by B the action of G on ..

As it is the case for the action of a free group on its boundary, we prove that the action
by right translation on ¢o(G) extends to an action on % which becomes the trivial
action on #.. The precise statement is as follows.

PROPOSITION 3.8
Consider the (right) action y : £°(G) — MU*®(G)Q co(G)) of G on the C*-algebra
£2(G) by right translation. For all a € % and all x, we have

(y(@) —a® 1)1 ® p) € co(G) @ B(H,).
Hence, y becomes the trivial action on A .
Proof

Suppose that a = Y (A) for A € B(H,). Fix a z, and take y > z. Using (A.6), we
get a constant C such that

A(Woox(A) (Priy ® p2)
=D V(@ 4+ @23+ 8) YAV (x +Y) ®z.x +5)°

seEy®z

~ Y (VaE®y x4+ @ )AQp®) (Ve @y, x+y) 1)

SEYRZ

(with error at most (z + 1)Cqg ")
= wx-&-y,x(A) ® Dz

If we keep fixed A and let y — 00, the conclusion follows. O

For later use, we prove the following lemma. The only interest at this point is that it
shows that %, is nontrivial because it follows that the maps ¥, : B(H,) = %«
are injective.
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LEMMA 3.9
There exists a constant D > 0 depending only on q such that

DI Ally, = 1¥xsy (D, = [1Ally,

forall x,y and A € B(H,).

Proof
Consider B(H,) as a Hilbert space using the state v,. Then

B(H,)— HQ®H, : A~ (AQ D,

is a unitary operator. Using the notation D(x, y) = [x + 1][y + 1][x +y + 1]"! and
(7.2), we know that 7, equals, up to a number of modulus one,

Dx, )'*(Vax®y,x+y)" @V ®x,x+y)) 1 &t ® ..

Using Lemma A.6, we get a constant D > 0 such that

sl = [ (Yresy 2 (A) @ Dty |

=D, N [(Vae®y,x+ )@ 1) (AR 11 1)
x (P @V ®x,x+y)) (1@t & Dt |

=D, N [(Vae®y,x+y)@1) (AR 11 1)
x(1®1®Vy®x,x+y))1®t ® |

=D, (Ve @y, x +3)* @ V(y ®x,x + y))
x(1®t,®1)(A® .|

> D[(A ® D] = D||Ally,.

So, we are done. O

4. Amenability of the boundary action and the Akemann-Ostrand property
We introduce the notion of an amenable action of a discrete quantum group on a unital
C*-algebra. We prove that for G = A,(F), the action of G on its boundary %, as
introduced in Section 3, is amenable. We then deduce the exactness of C(G),.q and
the Akemann-Ostrand property.

In the following definition, we make use of the representation

P2 £2(G) ® €*(G) — B (LXG)) : (ph)(a ® b)é,
= (bpx ® apf)gx for all gx € H, ® Hx.
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Recall that 7 denotes the right-regular representation of G.

Definition 4.1

LetB: % — M(co(@) ® 2) be an action of the discrete quantum group G on a unital
C*-algebra 2. We say that B is amenable if there exists a sequence &, € L*(G) ® %4
satisfying

. &g, — 1in 4, R

. for all x, [[((id ® B)(Ex) — V12(8)13)(1 @ px © DIl — 0;

. (PAA ®@ id)B(a)é, = &,a for all n and all a € 4.

Remark 4.2
It is clear that G is amenable if and only if the trivial action on C is amenable if and
only if every action is amenable.

The first two conditions in Definition 4.1 are natural. The &, are approximately
equivariant unit vectors. The third condition may seem mysterious, but already the
definition of an amenable action of a discrete group on a unital C*-algebra involves an
extra condition (see [1, Théoreme 3.3], where positive-definite functions take values
in the center). In the quantum setting, this centrality condition is replaced by the
third condition in Definition 4.1, and it reduces to centrality in the case where Gisa
discrete group. Indeed, in that case, (’,53:)& is the counit &, and the condition above
reads (1 ® a)é, = &,a for all a € & and all n.

Notation 4.3
In this section, we write H for the Hilbert space L*(G).

PROPOSITION 4.4

Let B : # — M(co(@) ® AB) be an amenable action of a discrete quantum group
G on a unital C *~algebra A. Then the natural homomorphism @f X B — @r X A
is an isomorphism. If, moreover, A is nuclear, then G x % is nuclear, the reduced
C*-algebra C(G)eq is an exact C*-algebra, and G is an exact quantum group.

Proof
Let (8, X) be a covariant representation of 8 on the Hilbert space K. Define bounded
linear maps

vt K = HQK :v,n = @id)(X)(id ® 0)(E)n.

We prove that the v, approximately intertwine the covariant representation (6, X) with
a regular covariant representation. First, observe that for all a € 4,

v.0(a) = (r ® id)(X)((Fh ® 0)(id ®B)B(a))(id ®O)(E,).
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Forall a € co(@) and b € 4, we have
(A ®@idX)((Pr ® 6)(id ® )a ® b)) = (= @ id)(X)(B(@) ® 1)(x ® id)B(b)
= (@) ® 1)(1 ® 6(b)) (& ® id)(X)
= (P ®0)(a ® b)( ® id)(X).

Hence,

Ung(a) = (75 X G)ﬂ(a)vn

foralla € 4.
Next, observe that

(1@ )X (P, ®D),,, = GRID(X)13Xx((d ®id ®6)((d® B)EN1 ® pe ® 1)),

while
(T (1 @ v)(p: ® D), 5 = G ® id)(X) 13 X3 (id ® id ® 0)(F12(5)13(1 ® p, ® 1)).
The condition in Definition 4.1 yields

(P: ® 1@ D((1 @ v)X = Ta(1® v,)) — 0

for all x € Irred(G). So, we have shown that the v, approximately intertwine (0, X)
with the regular covariant representation (0 ® 0)8, ”17;1 ). Since v;v, — 1 in the norm
topology, this shows that @f X B — @r X 4 is an isomorphism.

In order to show that @ X 2 is nuclear when 4 is nuclear, it suffices to observe
that the action 8 ®id of Gon% ® D is amenable when 8 is amenable. As a subalgebra
of a nuclear C*-algebra, the reduced C*-algebra C(G),q is exact. The exactness of G
follows from Proposition 1.28. O

We now fix F € GL(n, C) with FF = =+1 and take for the rest of this section
G = A,(F). We still have our standing assumption that G 2 SU_L(2).

THEOREM 4.5
Let G = A,(F). The boundary action of G on A+, constructed in Section 3, is
amenable.

Proof
Consider the unit vector . := ¥ (§,® 1) € L(co(G), H ® co(G)), as well as the unit
vectors

My = Upx € H ® B(H,).
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Note that u = (X r ®1d)A( pe). Observe that 1, € 3:( px)H ® B(H,), which implies
that the vectors (., are mutually orthogonal.

Define &, € H @ %A by the formula &, = (1/+/n + 1) Z';:O(id@) Yooy )(Hhy).
We claim that £*&, — (1 — g?)1. Consider, for a fixed x, the vector n, € H ® %o,

given by 7, = (id ® Voo )(ix). Since 11, = (Ag ® id)(pF®), we get
W@ DA PidH(, ® 1) = [x + 11(pr ® id ®id)
x (PP @ (1 ® piEN(pr® @ 1))
= [x + 11 ((g: ®1d)(pf®H)®1) (1 ® (¢, ®@ id)(piSY))

_ Ix+y+1]
T x4+ Uy + 1]

It follows that nin, = (¢7*/[x + 1)1 in $w. Since ¢ /[x + 1] — 1 — g* when
X — 00, the claim is proved.

In order to verify that (70\3:8 ® id)B(a)é, = &,a for all n and all a € A, it is
sufficient to check that

(ld 02 WX+_V.X)(/1LX)(apx+y) = ((1 ® p,H—y)(’:a;:A & ld)ﬁ(a))(ld 02 Wx-l—y,x)(:u“x) (41)

forall a € E"O(@) and all x, y € Irred(G). Observe that the right-hand side of (4.1)
equals

1@V @y, x+))((1® p: ® p)PARIARIDAV @U@ D)V(x @y, x +).
(4.2)
But, for all a, b € ¢o(G), we have

@r@id)(a® AB)u = (@) & 1) R @ id)AB) 7 (& ® 1)
= (P@) @ 1)V (b © 1)
= V(% @ id)A%(@)& ® 1)2(b) = pad(b).
It follows that (4.2) equals
(1©VE®y, x4+ y)") (1 ® D((px ® pA@)Vx @y, x +y)
= (1d @Yty (W )(@Px+y)

This proves (4.1). We then come to the crucial approximate equivariance condition
for &,. First, observe that Y1oiu13 = 7127135 @ 1 @ 1) = (id ® A)(w). Hence, for
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all x andall y > n,

7’/1\2(&)13(1% ® py) = \/— Z(ld@ld R Y,, s)( 12M13(Px ® Ps))

S i(id@id@%)((id ® A)()(px ® py)).
i+l : |

Taken > K > x and y > n + x. We now write equalities up to an error term, which
we estimate using the norm of the C*-module H ® B(H,) ® B(H,),

7712@n>13(px ® py)

J_ Z(m ®id ® ¥,.0)((id ® A)(u)(p: ® p.))

(with error at most

K
V)

= \/nlﬁ 0D (dRid @Yy ) (1@ Vx ®s, 2)u:V(x ®5,2)") = (%).

s=K z€x®s

It follows from (A.3) that there exists a constant C such that

ld®@id @ ¥, )1 ® V(x ®s, 2. V(x ®s, 2)")

—(1®VEx®y.24y—9))id @Yoty )W)V E @ y. 2+ y — )|

S 2Cq7x+s E 2Cq7x+K.
Observe now that in the sum (%), for a given z there are less than x + 1 corepresentations
s such that z € x ® s. Moreover, in the sum (%), z ranges from K — x ton + x, and

we have u, € 3:( p.)H ® B(H,) with the 5:( p.)H orthogonal for different z. We also
observe that z € x ® s if and only if z + y — s € x ® y and conclude that

(%) ~

\/_Z Z RVx®y,z+y _s))(1d®1/fz+y vz)(:uz)

s=K zex®s
xV(x®y, z+y—s)* (witherror at most 4(x + 1)Cqg ")

1
= = Z D (1@ VE®y. 1)id ® Yy )y i)V (x @ y, 1)

s=K rex®y

= (id ® A()(p. ® py),
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where € H ® co(G) is given by np, = (1/5/n + 1) Xr_ (id ® Yy (thr—y4s)
whenever y —x <r <y + x and np, = O elsewhere. Wheny —x <r <y +x,

2x + K

r = &nDrll = .
Inpr — &uprl NoES

Since the expression (id ® A)(n)( P« ® py) takes into account only the values of 1p,
fory —x <r <y + x, it follows that

(id ® A))(p, ® p) ~ (d @ A)E)(py ® p,) (with error atmost 1= ).
J ' Jn+1

We finally conclude that
x + 2K

vn+1
Given x, we first take K such that 4C(x + 1)g **X is small. We then take n such that

(2x +2K)/+/n + 1 is small. As such, we have shown the amenability of the action
B. Indeed, it suffices to replace &, by (1 — g?)~'/%¢,. o

| (P2 — (id ® B)ED) (1 © pe @ D < +4C(x + g -,

Remark 4.6

The same proof shows that the actlon of G on €°°(G) / CO(G) by left translation is an
amenable action. But since E°°((G) / CO(G) is nonnuclear (even nonexact), we really
need the amenability of the action on the nuclear C*-algebra %, to show, for example,
the exactness of C(G)eq.

We deduce exactness and the Akemann-Ostrand property from the amenability of the
boundary action. Note that an independent proof of the Akemann-Ostrand property
has been given by Vergnioux in [26].

COROLLARY 4.7
Let G = A,(F). Then C(G)q is exact, and G satisfies the Akemann-Ostrand prop-

erty.

Proof
The exactness of C(G),eq follows from Proposition 4.4. Put H = L?*(G). Consider
the left-right representation

B(H)

Ao 2 C(G)yreq n(%x C(G)req — A

We have to show that this homomorphism factorizes through C(G)eq ®min C(G)req.
But we also have the homomorphism %., — B(H)/X# (H). It follows from
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Proposition 3.8 that p(C(G)eq) and %+, commute in B(H)/# (H). Hence, we get a
homomorphism

=~ B(H)

G X By C(G)eg > ———.

( ) n%x (G)rea &)
Since G x A is nuclear, the left-hand side equals (@ X Boo) Rmin C(G)req, and we
are done. O

Combining with Theorem 2.5, we get the following result.

COROLLARY 4.8
Let G = A,(F), and denote M = C(G)\.y. Then M is a generalized solid von
Neumann algebra.

5. Probabilistic interpretations of the boundary %,
A natural setting where boundaries of discrete groups appear comes from considering
(invariant) random walks on the group. One associates to such arandom walk a Poisson
boundary, which is a probability space, and a Martin boundary, which comes from a
bona fide compactification of the group.

Both notions of Poisson boundary and Martin boundary have been generalized to
random walks on discrete quantum groups (see [5], [8], [13], [14], [17], [21], [23]).

In this section, we show that the Martin boundary for the dual of A,(F’) is naturally
isomorphic with the boundary %, constructed above. Moreover, the Poisson boundary
is isomorphic with the von Neumann algebra generated by %, in the GNS construction
of a natural harmonic state on #,. Bounded harmonic elements of Koo(@) are written
with a Poisson integral formula. Note, in this respect, that a theorem establishing the
link between Martin boundary and Poisson boundary for general discrete quantum
groups has not yet been established (see [17]).

Notation 5.1
Recall the states ¢, and ¥, introduced in Notation 1.11. For every probability measure
w on Irred(G), we consider the states

W;L = ZM(X)% and Pu = ZM(X)%

Associated with these states are the Markov operators

P, = (¢, ®id)A and 0, =({d®V,)A.
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Note that a state  is of the form v, if and only if the Markov operator (id ® w)A
preserves the center of Z"‘”(@) (see, e.g., [17, Proposition 2.1]). Also, note that we have
a convolution product p * v on the measures on Irred(G) such that V., = ¥, x ¥,
and @ = @, * @,.

The operators P, and Q, are the Markov operators associated with a quantum
random walk. Their restriction to the center of ZOO(@) yields a Markov operator for a
classical random walk on the state space Irred(G) with transition probabilities p(x, y)
and n-step transition probabilities p,(x, y) given by

pcp(x,y) = px Qu(py), PxPa(x,¥) = px Q) (py). (5.1
Note that p,(e, y) = u*'(y) = ¥;"(py).

Definition 5.2
The probability measure 1 on Irred(G) is said to be transient if Y - pu(x, y) < 00
for all x, y € Irred(G).

Contrary to the case of random walks on discrete groups, probability measures on
Irred(G) are very often transient (see [17, Proposition 2.6]). In particular, if G =
A,(F) with G 22 SU(2), SU_{(2), every probability measure not concentrated in zero
is transient.

Poisson boundary
Definition 5.3
For any probability measure p on Irred(G), we define

H®G, w) = {a € £*G) | Qu(a) = a}.

The weakly closed linear space H Oo(@, W) is in fact a von Neumann algebra with
product given by

a-b=s"-lim Q' (ab).

Note that the Poisson boundary has a natural interpretation as a relative commutant in
the study of infinite tensor-product actions (see [13], [22]).

Terminology 5.4
The support of a measure p on Irred(G) is denoted by supp . We say that u is
generating if

Irred(G) = U supp(u™).

n=1
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The restriction of & to H OQ(@, /) defines a normal state on H OQ(@, /). This state is
faithful when p is generating.

From now on, we fix G = A,(F) for a given matrix F satisfying FF = +1.

Since the fusion rules of A,(F’) are abelian, we know from [14, Proposition 1.1]
that H 00(@, 1) does not depend on the choice of a generating measure . Moreover,
ameasure u on N = Irred(G) is generating if and only if its support contains an odd
number.

The aim of this section is to define a harmonic measure (i.e., a state) on the
boundary %, and to write every harmonic function (i.e., element of H OO(@, L)) as
an integral with respect to the harmonic measure.

PROPOSITION 5.5
The formula

w(a) = lim ¥, (a)

yields a well-defined state on A, and a)(co(@)) = {0}. The resulting state on B, =
B co(G) is denoted by wse.

Proof
It suffices to observe that ¥,y ¥4y« = ¥, forall x, y € Irred(G). O

Denote by (%, Ws)” the von Neumann algebra generated by %, in the GNS con-
struction for the state we. It is easy to check that w,, is a Kubo-Martin-Schwinger
(KMS) state on %, with modular group given by 0," (/oo 1 (A)) = Yoo . (QTAQ ™)
for all € R, x € Irred(G), and A € B(H,). In particular, @, induces a normal
faithful state on (B oo, o).

THEOREM 5.6
Denote G = A,(F), and suppose that G 2 SU(2), SU_,(2). Let 1 be any generating
measure on Irred(G). The linear map

T: B — £°G): T(a) = (id ® woo)Boos(@)

yields a *-homomorphism T : B, — Hm(@, W) satisfying €T = ws,. Moreover, T
vields a *-isomorphism

(Boor 00)" = (H®G, ), 8).

Proof
We first claim that (¥, ® weo)Boc(@) = w(a) for all a € AB.. It then follows that
T(a) € H®(G, ) for all a € . To prove our claim, observe that for all x and
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y>x, (U, ® 1//},)5 is a convex combination of ¥ry_, ..., ¥,4,. It follows that
(W @ w)B(a) = w(a) foralla € 4.
To show that T is multiplicative, it suffices to show that for all fixed a, b € $,

(T(@T ) — T(ab)) p,

| — 0 (5.2)
when n — o0. Indeed, for fixed a, b € #A, and a fixed x,
(T@- T®)ps = s-lim(id @ ¥;HA(T@T b)) p...

By the transience of the state r,,, the expression on the right-hand side for n big, takes
into account only 7'(a)T (b)p,, for m big. This last expression is close to T(ab)p,,.
But (id ® w;")A(T(ab)) = T (ab), and we are done.

Hence, to prove the multiplicativity of 7', it remains to show (5.2). It suffices to
show that for all x and A € B(H,) fixed,

|(id ® @oo)Boo (Voo x (A)) pu — Y o (A)| = 0 (5.3)

when n — o00. Fix x and A € B(H,). Take y > x and z > y. Then

(d ® Yot DA (Yoo (D) py = D (d @ Yar) (VY ® (x +2), X + )Pty r(A)
SEYRZ
X V(y® (x +2), x +5)")

_ [x +s+1] .
= Z [y+1][x+z+I]V((x+s)®(x+1),y)

SEYRZ

X (wx+s,x(A) ® I)V((X + S) ® (x + Z)a y)
From Lemma A. 2, we get a constant C depending only on ¢ such that

dr((V(x ®5,x +5) @ DV((x +5) ® (x +2), ),
A®V(E @ +2),y =NV ®(y—x),y) < Cq— .
Note, however, that this statement makes sense only when y — x € s ® (x + z). This

is the case for s > z — y 4 2x, and so, we can safely go on because our estimate is
greater than 1 if s < z — y 4 2x. Hence, we get a constant D such that

[x +s+1]
[y+ 1[x+z+1]

(0@ VDA (Waor( ) py & 3

seY®z

Wy,x(A) = wy,x(A)
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with error at most

F < Dg'|A .
[y+1][x+z+1]qx+zq = Dq ™l ||[y+1]

[x +s + 1]g*t* ) 2y +1
> 214)C
SEYRZ
Since this estimate holds for all z > y, we find that

2y + 1

|60 © 0o (Ve () Py = ¥ )] = Dy IAI T

So, (5.3) follows, and the multiplicativity of 7" has been proved.
It is obvious that £T = w,,. Consider the adjoint action of G on £>°(G) given by
®(a) = V(a ® 1)V* for all a € £2°(G). Since

U™ (Yrapyx(A) @ 1)(U™)" = Yy, ® 1) (U (A ®@ DWUY)Y),

the action @ restricts to an action of G on %. Moreover, the action ® preserves the ideal
co(@) C 4, yielding an action ®, of G on #,. We have (id ® h) Py (a) = wso(a)l
forall a € B. So, D, is an ergodic action, and @, is the unique invariant state. By
definition,

Do (Voo (A)) = (Voo x @ id)(U*(A @ D(U*Y).

From Lemma 3.9, we know that ¥, : B(H,) — % is an injective linear map.
So, we conclude that the irreducible representation U* appears with multiplicity one
in ®,, when x is even and with multiplicity zero when x is odd. Moreover, the
*-homomorphism T intertwines @, with the adjoint action of G on H OO(@, ).
From [14, Corollary 3.5], we know that the multiplicities of the irreducible rep-
resentations in the adjoint action on H Oo(@, /) are at most the multiplicities in ®.
Since we, yields a faithful, normal state on (B, ws)” and since ET = wy, the
homomorphism 7' : (Bwo, ws)’ — H 00(@’ ) is faithful. It follows that T is a
*-isomorphism. O

Martin boundary
The Martin boundary and the Martin compactification of a discrete quantum group
have been defined by Neshveyev and Tuset [17]. We first introduce the necessary
terminology and notation and then prove that the Martin compactification of the dual
of A,(F) is equal to the compactification % constructed above.

Let G be a discrete quantum group, and let i be a probability measure on Irred(G).
We have an associated Markov operator Q,, and a classical random walk on Irred(G)
with n-step transition probabilities given by (5.1). We suppose throughout that p is a
generating measure and that p is transient. It follows that 0 < Z:il pu(x,y) < 00
for all x, y € Irred(G).
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Denote by cc(@) C co(@) the algebraic direct sum of the algebras B(H,). We
define, for a € c.(G),

Gula)=)_ 0.

Observe that, usually, G, (a) is unbounded, but it makes sense in the multiplier algebra
of CC(G) (i.e., G (a)p, € B(H,) makes sense for every x € Irred(G)). Moreover,
G . (p.) is strictly positive and central. This allows us to define the Martin kernel as
follows.
Whenever p is ameasure on Irred(G), we use the notation 7t to denote the measure

given by 7i(x) = (@)

Definition 5.7 ([17, Definitions 3.1, 3.2])
Define

K, : @) = 2@G): Ku(a) = G(a)G(p:) "

Define the Martin compacnﬁcatlon A as the C*-subalgebra of E"O(G) generated by
Kx(c, (G)) and CO(G) Define the Martzn boundary A, as the quotient A u/ CO(G)

The aim of this section is to prove the following result.

THEOREM 5.8
Denote G = A,(F), and suppose that G 2% SU(2), SU_(2). Let |1 be a generating
measure on Irred(G) with finite first moment

qu(x) < 0.

xeN

Then the Martin compactification A « equals the compactification % defined in Propo-
sition 3.4. In particular, the Martin boundary A, equals % .

Proof
Introduce the notation p.g,(x,y) = p.G.(py). One has g,(0,x) = gz (x,0)
dim,(x)*. So, if A € B(H,) and y > x, we get

Gu(Ap)py = Z gr (0, ) ® Y )(V(y ® z, ) AV (y ® z, x)").

7eX®y
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An easy computation yields

K.(Ap)p, = Xx: gu(y —x +2z,0) dim,(y — x + 2z) dim,(x)
T gu(0,0) dim, (y)

xV(x® @y —x+22)) A0 HV(x®(y —x +22)).

From [17, Proposition 4.7], we know that

lim $&+LO o
x—>oo g,(x,0)

Using Notation 5.9, the previous formula, and the asymptotics for the quantum di-
mensions, we find that for all x € Irred(G) and A € B(H,),

lim H Ku(App, — > g~ dimq(x)w;x(A)H —o.
y—00 *
z=0
Denoting by [Y] the closed linear span of Y, we conclude that
[c0@) + Ku(c(©))] = [co((}) + 3 YL (4) ( xeN Ac B(Hx)]. (5.4)
z=0

Recall the C*-algebra 4 defined in Proposition 3.4. Combining (5.4) with (5.5) in
Lemma 5.10, we conclude that [co(@) + Kg(cc(@))] C 4. The opposite inclusion
follows by combining (5.4) with (5.6) in Lemma 5.10. In particular, the C*-algebra
generated by co(@) and Kﬁ(cc(@)) equals 4. a

Notation 5.9
Definition 3.1 admits the following natural generalization. For all y > x > z, we
write

¥Z . :B(H,)
— B(H,): y7 (A= V(x®(y —x+22,7) (A0 DV (x ® (y — x +22), y).
Note that ¥, , = 1//}(,)’)(. We define as well ¢5,  (A) for x > z and A € B(H,) by

Vi (A)p, = ;;’x(A) whenever y > x.

LEMMA 5.10
There exists a constant C > 0 depending only on q such that for all x, y,z € N and
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A € B(H,), we have

IWctyteniy Yy (A) = Vg (DI < C@NIANL forall0 <r <x, (5.5)
1V ytz iy Yty (A) = Yagy o x (A < Cg* T NIANl forall 0 <r < x +y.

(5.6)
Proof
Inequality (5.5) follows from (A.2) in Lemma A.1, while (5.6) follows from (A.5) in
Lemma A.2. O

6. A general exactness result
In [6], a notion of monoidal equivalence of compact quantum groups was introduced.
It was shown, in particular, that for all F € GL(n, F) with F F =cl,c = +1,
Tr(F*F)=¢qg +1/g,and 0 < g < 1, the quantum groups A,(F’) and SU_,(2) are
monoidally equivalent.

In this section, we prove that the exactness of the reduced C*-algebra of a compact
quantum group is invariant under monoidal equivalence. As a corollary, we obtain an
alternative proof for the first half of Corollary 4.7.

THEOREM 6.1

Let G and Gy be compact quantum groups. Let ¢ : G — G be a monoidal equiva-
lence in the sense of [6, Definition 3.1]. Let Byeq be the associated reduced C*-algebra.
The following statements are equivalent:

. C(G)yeq is exact;

. C(G)req Is exact; and
. B4 is exact.

Proof

Following [6, Theorem 3.9], we consider the *-algebra 4 generated by the coefficients
of unitary elements X* € B(H,, Hy)) ® #. We consider the canonical invariant state
w on 4 and denote by B4 the associated reduced C*-algebra.

By symmetry (i.e., using the inverse ¢! : G; — G), we consider the *-algebra
% generated by the coefficients of unitary elements Y* € B(Hy, Hy) ® %. We
denote by @ the invariant state on % and by Ered the associated reduced C*-algebra.
Observe that we have a canonical anti-isomorphism 7 : By — Ered given by
(id @ m)(X*) = (Y*)* for all x € Irred(G). So, Ered is nothing else than the opposite
of Bieg.

Suppose first that B4 is exact. Then Ered is also exact. Moreover, we get an
injective *-homomorphism 0 : C(G)eq — Ered ® Bieq given by (id  0)(UY) =
Y5 X15. A priori, 0 defines a *-homomorphism C(G), — Z?red ® Bieq, but it is easy
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to verify that (@ ® w)@ is the Haar state. So, 6 is well defined on C(G)q. It follows
that C(G),eq 18 exact. In a similar way, we deduce that C(Gy),eq is exact.

Suppose next that C(G),q is exact. Then G is an exact quantum group. Since Bieq
is Morita equivalent with a reduced crossed product @r X 4, it follows that By is
exact. In a similar way, exactness of C(G),.q implies exactness of Bieq. a

COROLLARY 6.2
Let G = A,(F). Then C(G),eq is exact.

Proof

By amenability of (the dual of ) SU,(2), the exactness of its reduced (and universal)
C*-algebra is obvious. The result follows since every A,(F’) is monoidally equivalent
with some SU,(2). |

The same argument admits the following generalization.

COROLLARY 6.3
The reduced C*-algebra of any compact quantum group monoidally equivalent with
a q-deformation of a simple compact Lie group is exact.

Remark 6.4

We can as well give a sledgehammer argument for the exactness of the reduced C*-
algebra of A,(F). It follows from [6] that any A,(F) is monoidally equivalent with
an A,(F) with F € GL(2, C). But it follows from [4] that the reduced C*-algebra
of such an A, (F) is a subalgebra of the reduced free product of SU,(2) and § ! and
hence, we are done.

7. Factoriality and simplicity
We prove that at least in most cases, the von Neumann algebras associated with G =
A,(F) are factors. We determine their Connes invariants, and we prove that the reduced
C*-algebras are simple. In combination with the results above on the Akemann-
Ostrand property, we obtain new examples of generalized solid (in particular, prime)
factors.

On the von Neumann algebra side, we get the following.

THEOREM 7.1

Let N > 3, and let F € GL(N,C) with FF = =+1. Suppose that |F|> <
Tr(F F*)/N/5. Write G = Ay(F) and M = C(G).,.
o M is a full generalized solid factor with almost periodic state h. In particular,

M is prime.
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. Sd(M) is the subgroup T of R generated by the eigenvalues of QO @ 0 '.In
particular, M is of type II, when FF* = 1, of type Ill, when T' = A%, and of
type Il in the other cases.

. The C*-subalgebra of B(L*(G)) generated by M(C(G)) and p(C(G)) contains
the compact operators.

If FF* =1and N > 3, M is a solid (in particular, prime) II,-factor.

On the C*-algebra side, we obtain the following.

THEOREM 7.2

Let N > 3, and let F € GL(N,C) with FF = =£1. Suppose that |F||® <
(3/8) Tr(F F*). Write G = A,(F). Then C(G)yq is a simple exact C*-algebra, and
h is the unique state on C(G),eq satisfying the KMS condition with respect to (ath). In
particular, for G = A,(Iy) and N > 3, C(G)q is a simple exact C*-algebra with
unique tracial state h.

Theorems 7.1 and 7.2 are proved through a careful analysis of the quantum analogue
of the operation of conjugation by the generators in free groups (see Definition 7.3).
Fix a matrix F € GL(n, C) satisfying FF = +1, and put G = A,(F). Define
H, = C", and define U' := U, the fundamental representation on H;. Recall that
the modular theory of the compact quantum group G is encoded by positive invertible
elements Q, € B(H,). In the case of G = A,(F), we write Q := Q, and we have

Q=F'F  and Q' = FF*.

Write FF = ¢l with ¢ = £1. Write t; = Tr(Q)~'/? Z:’:l e; ® Fe;, which is a unit
invariant vector for the tensor square U®2.

In order to study factoriality and simplicity, we introduce the following operators,
using Notation 1.18. Recall as well the regular representation p : C(G) — B(L*(G))
given by (1.3). We denote the antthomomorphism p° defined by

pP(@)pb)§y = p(ba)éy foralla € Cyuy(G), b € C(G),

where C,,(G) C C(G) is the dense *-subalgebra given by the coefficients of finite-
dimensional representations of G. Note that p° is not involutive. We have p°P(a)* =
pOP(a,-h (a)*), where the modular group (a,h) is given by

(id®@o)U) = (0" ® HU(Q" ® 1).



70 VAES and VERGNIOUX

Definition 7.3
We define operators 7 and P as follows:

T:L*G)— H QL*G)Q H, :flipoT

1 - _~
= dimq(l)((AL ® P)U) — (AL ® p™)(U)),

P:CG)— C@G): Pa) = ((Tre ®id)(U*(1 ® a)U)

1
2Tr(Q)
+ (Tro- ®id)(U(1 ® a)U™)),
where flip denotes the identification
flip: H @ H ® L*(G) > H, ® L*(G) @ H, :flip @n®u) =n@ueE.
We also use P on the Hilbert space level, writing

P: LXG) — LXG) : Pp(a)é = p(P(a))g forall a € C(G).

It is straightforward to check that

c n
=i ; Y — 0°P(Us; ,
r= dim, (1)1/2 ,Xz:l Fe; ® (p(Uy) — p™(Uy) ® i,

Remark 7.4
The relevance of the operator T in the study of the factoriality of C(G)],, is clear.
Indeed, C(G)" is a factor if and only if Tn = 0 implies that n € C&,.

red

Together with proving the factoriality of C(G)!,, we compute the Connes invariants

for C(G).,. In order to do so, we introduce the following deformation of 7'

T, = T D (AL ® po(U) — (AL ® p™)(U))

c n , .
- W 2:1 Fe;® (,OO’t Wij) —p p(Uij)) ®e;.
i,j=

The following is the major technical result of the section. It follows from a series of
lemmas proved at the end of the section. We already deduce factoriality and simplicity
results from it.
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PROPOSITION 7.5
If 10| < Tr(Q)/\/g, there exist Cy > C, > 0 such that

IT.&1 = /CRIEIR + Dul&o. )1 — Calé)
foralls € R, & € LX(G), where
E=E+&(E.6)  and D, =2(1-[((1® 0").0)]).
We have already shown how Theorems 7.1 and 7.2 follow from Proposition 7.5.

Proof of Theorem 7.1
Write S = C(G),eq, and consider the operator P € B(L?(G)) introduced in Definition
7.3. Note that 2(1 — P) = T*T. From the definition of P, we get the fact P €
C*(A(S), p(S)). From Proposition 7.5, we get 0 < C < 1 such that the spectrum
of P is included in [0, C] U {1} and the spectral projection of {1} is precisely the
projection onto C&. It follows that C*(A(S), p(S)) contains the compact operators
and that M = C(G)/,, is a full factor. From Corollary 4.8, we already know that M
is a generalized solid von Neumann algebra. Combining with Proposition 2.3, we get
the fact that M is prime.

Denote by I' the subgroup of R* generated by the eigenvalues of Q ® Q0 '.In
order to show that Sd(M) = T, it suffices to show that given a sequence (s,) in R,
as’z — 1 in Out(M) = Aut(M)/Inn(M) if and only if

(1 ® Q" 1) — 1.

One implication being obvious, suppose that O’!:, — 1 in Out(M). Take unitaries
u, € M such that (Ad u,,)as”’l — id in Aut(M). It follows that

175, p(u;)Eoll — 0.

Applying Proposition 7.5, we first get that [[(o(u})&p)°|| — 0, and then we obtain
(1 ® Q") 1) — L. m

Proof of Theorem 7.2

Consider the operator P:C (G)red = C(G)yeq, as in Definition 7.3. From Proposition
7.5, we get a constant 0 < C < 1 such that ||F(a)||2 < Cllall, for all a € C(G)eq
with i(a) = 0. If C(G), denotes the linear span of matrix coefficients of U°, ..., U",
we have PX(C(G),) C C (G),42¢. In particular, for a € C(G), such that h(a) = 0,

we have

IP @)l < p(n + 2011 Q1I" | PX(@)ll, < p(n + 26)[Q1*(CII Q1% llall2,
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where p is a fixed polynomial given by the property of rapid decay (RD) for A,(F)
(see Remark 7.6). Hence, if C||Q||> < 1, we find that P¥(a) — 0. Since P is unital,
this implies that Pk(a) — h(a) for any a € C(G).q; hence, a cannot be in a
nontrivial ideal. Moreover, P leaves invariant any state ¢ satisfying the KMS condition
with respect to (crth); hence, h and ¢ agree on any a € C(G)yq. It follows from
(7.9) in Remark 7.12 that the condition C||Q|> < 1 is satisfied whenever || Q||* <
(3/8) Tr(Q). O

Remark 7.6
In the proof of Theorem 7.2, we made use of property RD for universal quantum
groups as introduced in [27]. This property yields a control over the norm in C(G)eq
using the norm in L%(G).

Denote by C(G), the linear span of matrix coefficients of U 0 ..., U", and denote
by || - |l> the GNS norm associated with /. One possible definition of property RD
goes as follows:

dp € R[X] suchthatVn € N, a € C(G),, ||p@)| < pm)|al-.

In the case where G = A,(F), itis proved in [27, Theorem 3.9] that property RD holds
if and only if F is a multiple of a unitary matrix (i.e., Q@ = 1). In fact, the techniques
of [27] still work in the nonunimodular case but yield nonpolynomial bounds. We get
a polynomial p € R[X] such that

le@ll = 121" p(m)llall2

foralln € Nandalla € C(G),.

So, it remains to prove Proposition 7.5, which takes the rest of the section.

The proof is not very hard but somewhat computationally involved. In order to
streamline our computations, we choose explicit representatives for the irreducible
representations of G = A,(F), as well as for the intertwiners V (x ® y, z) with tensor
products of irreducible representations. We know that Mor(1®", 1®") is isomorphic
with the Temperley-Lieb algebra. In particular, we have the Jones-Wenzl projection
P € Mor(1®", 1®"), which allows us to define H, := p,H" and to take U" as the
restriction of the n-fold tensor product U®" to H,. We write 1, = 1®".

Using [7, Theorem 3.7.1], we can recursively define the unit vectors t, € Mor(x ®
x, 0) and the isometries V(x +2)® (z+y), x +y) € Mor(x +2) ® (z+y), x + )
using the formulas

f = Tr(F*F)~'/? Zei ® Fe;, (7.1)
i=1
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[x + L[y + 1]
= (B0

12
e ® Pl ® 1, @ 1)1, 7.2
Gy P ®@plen el (7.2)

Vk+2) Q@+ y),x+y)
(e T
- [x+y+z+1]

r

) (Pr1:® Pz+)f)(1x Rt 1y)px+y- (7.3)

Here, we used the usual notation of g-numbers, g-factorials, and g-binomial
coefficients. As before, we take 0 < ¢ < 1 such that

1 _
Te(F*F)=q + —, FF =cl, wherec = =+1.
q
Then we use the following notation.

Notation 7.7
With 0 < g < 1 fixed, we write the g-numbers, g-factorials, and g-binomial coeffi-
cients:
" —q" [n]!
[#]=

9 | — ~11... -
pap— [n]! = [n][n — 1] ---[1], =t

[n] =

Note that dim, (x) = [x 4 1]. Wenzl’s recursion formula for the projections p, admits
the following generalization (see [12, (3.8), p. 462]):

2
(1—Z< yoit ][ s enoLanen)poao. 04

Note that by multiplying on the left-hand side with p,_; ® 1, we obtain Wenzl’s
recursion

B 21 — 1] .
pn — pn—l ® 1 - T(pn—l ® 1)(1n—2 ® l1t1 )(pn—l ® 1) (75)

Notation 7.8

The study of T consists of comparing the left action and right action of the coefficients
of U, and hence, it has a natural counterpart at the level of representations. More
precisely, let us introduce the following shorthand notation:

o =V(IR®x+1),x), ¢ =V((+DH®ILx),
¢y =V(1®«—1),x), ¢, =V(x-D®IL x).

Forany x € N, we alsodefineo : HL ® HH - HH Q@ H.byo(n® u) = u Q n.
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LEMMA 7.9
We have T =T+ + T, where TT™(H, ® H,) C H,y1 @ Hyy1yand T~ (H, ® H,) C
H. | ® H,_; are defined by the formulas

+o dim,(x + 1) ~1 + + + xr -1 +
1= Gty dim (€ @ D91 @0 — 09 @00 ® g

dim, (x — 1)

T'n= |v—1——
dim, (1) dim, (x)

(Q'e g @, — od; ®* (07 ® Dy )n,

foralln € H, ® H,. The corresponding formulas for T, are obtained by composing
the first term of each difference with (0" @ N ® (1 ® Q™).

Proof
By definition of the tensor product of representations of G, we have

(@ ® PIU N wy e ® p)UY) = Z (@yaer v men.vaer,yese) @ PIUY).
yEX®x’

Since the definition of 7" involves multiplication on the left and multiplication on the
right by coefficients of U! and since 1 ® x and x ® 1 split into a direct sum of x — 1
and x + 1, clearly, T consists of four terms, say, 7 = T+ + T~ and T* = T," — T ™.
More explicitly,

T, p((wy¢ ® id)(UY))&

W Z Fe; ® p((@gr e @ rees @IDUT)E @e,  (7.6)

and T,", T,”, and T~ are defined analogously. From (1.3), we get

p((@,¢ @id)(UY))& = £ @ (1 @ n)t,.

To compute the right-hand side of (7.6), observe that

n

Y (1@ ¢ ) ®e =11 7)1 ® ¢ s

i=1

=1®1®n)¢ ® Dt =¢/ 10 (1.7
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Using the equality ), Fe; ® e; = cdim,(1)'*(Q7" ® 1)t;, we observe as well
that,

D Fe; ®(¢) (e; ®&) = cdimy(D'2(Q7 ® (¢,)")(t1 ® &)

j=1
_dim(x+1) N
=c ,—dimq(x) (07 ®@ Dy &, (7.8)

Combining (7.7) and (7.8), we get the fact that the right-hand side of (7.6) equals

dim, (x + 1) . . .
/—dimq(l)dimq(x) ('@ D¢ ® ¢ )(E ® (1 @n1).

The formulas for 77, 7,7, and 7.~ are proved analogously. O
The proof of Proposition 7.5 follows immediately from the following two lemmas.

LEMMA 7.10

We have the following inequalities for a given x > 1 and using Notation 7.8:

dim,(1)dim,(x)  dim,(x — 1)
dim,(x + 1) dim,(x + 1)

@@ D¢’ (B (1 ® 0N > 1ol

Proof
Observe that

_ dim, (1) dim, (x)

k=2 + * -2
(¢)(Q7® D¢, = dim, r + 1) (7 @ L)(Q ™" ® pry)(t1 ® 1y).

From a left-handed version of (7.5), we get

dim, (1) dim, (x — 1)
dim, (x)

Px+1 = 1 ® DPx — (1 ® p)c)(tltik ® 1)cfl)(l ® px)

Combining with the previous equality and using the facts
HO7?®hn=1 and (O ?®@n)H ® 1) =dim,(1)>07,

we obtain the first inequality of the lemma. The second one is proved
analogously. O

Now, we prove a more interesting result, which states that the maps o are far from
being intertwiners in some sense, at least when Q = 1. Indeed, observe that the
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numerical coefficient (dim,(x) + 1)/ dim,(x + 1) in the next statement is always less
than 1.

LEMMA 7.11
We have the following inequalities for a given x > 1 and using Notation 7.8:

dim, (x) + 1

(@) (@™ ® Dol < % b GTD
q

forall s € R.

Proof
First, we have
dim, (1) dim, (x)

107 ® p, 1, ®t).
dim, (x + ) (7 ® 1.)(Q ® pry)o(l, ® 1)

eH Q" @ od =

From (7.4), we get

(—c)* 1 dim, (1)

Px+1 = (1 ® px)(px ® 1) - (1 ® px)(tl ® lel & tik)(px ® 1)7

dim, (x)
and we easily conclude that
1l dim, (x) .
+\* 1—is + q I4isy %
ooy = D,
(¢,)(Q ® Do, dim,(r £ 1) pe(c(licr ® Q7)o
(_c)x+1 L
T I 1
dimc+ D 2 @leo)p
The lemma follows from this equality. i

We finally prove Proposition 7.5.

Proof of Proposition 7.5
We write n = Y n, withn, € H, ® H, whenever n € L*(G). Take n € L*(G). By
Lemmas 7.9, 7.10, and 7.11, we have, for x > 2,

-1 (47
T+ 2 271 — 2 - )
1T = ( 101 (S5 + DHX][HI]))nnX 1
_ _ 1+ [x] ) )
=2(1 = 25O I
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‘We also have

is 2
(T lI” = 2(1 - |((1 ® 0", f)| )||770||2
and (T;*n)o = 0. By Lemma 7.9, we have, for all x > 0,

, [+ 1]

B 2
Dilx + 2] [/RSSY I

1T > < 4l Qll

Suppose now that || Q]|/[2] < 1/«/3. We put

1 4 [2]\1/2 g \\/2
c=v2(1-20P=2) 0 a=2000(5)
: [213] ’ 2]
and we observe that C; is well defined and C, < C,. So, Proposition 7.5 is
proved. O
Remark 7.12

In the proof of Theorem 7.2, we need an estimate on the norm of P on &;-. With the
notation introduced at the end of the proof of Proposition 7.5, we get

C,— Gy
1Pl < (1- S0 g

2

whenever & € L*(G) and (£y, £) = 0. In order to prove Theorem 7.2, we need

lor(1- Sy o

If |Q|I* <aTr(Q)witha < 1/\/3, we have

2 _(CI_C2)2 1+[2]_ 3/4 1/4 _ 1+[2]
1017 (1 - 5= = 2a( 5 q) + 2474121 /2q 1 2T

Taking @ = 3/8 and realizing that Tr(Q) > 3, we conclude that
IQIP1I PNl < 0,99]€ |l (7.9)

forall £ € SOL when || Q||* < (3/8) Tr(Q).

Appendix. Approximate commutation of intertwiners
In this appendix, we prove several estimates on the representation theory of A,(F).
Weaker versions of these estimates were proved and used in [26].

We denote dr(V, W) = inf{||V —AW|| | A € T} whenever V, W are in a Banach
space.
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We fix F € GL(n, C) with FF = cl and ¢ = 1. We take 0 < ¢ < 1 such
that Tr(F*F) = q + 1/q. We freely use the explicit choices that can be made for the
representation theory of G = A,(F) (see Section 7).

In this appendix, dealing only with the representation theory of A,(F’), all small
letters a, b, ¢, x, vy, z, 1,5, ... denote elements of N (i.e., irreducible representations
of A,(F)).

LEMMA A.1
There exists a constant C > 0 depending only on q such that for all a, b, c and all
z€a®b,

[(V@®b.2)®1)pi% — 1@ pfd(Va®b )@ 1) < C¢“72, (A1)
dr(V@®b, )@ DV(z®c,z+0),

1@VB®c,b+c)V(a® b +c),z+c) < CqgtH 2, (A2)
dr(1®@ VOl ®c,b+c))(V@®b,2)® 1),
Va®b+c),z+0)VE®c, z40)f) < Cqttr2, (A3)

If we write z = a + b — 2s with 0 < s < min{a, b}, we have (z +b —a)/2 =b —3s,
and hence, g0~ 9/2 < g=a+b,

It is easy to derive (A.2) and (A.3) from (A.1). Obviously, Lemma A.l has a
left-handed analogue.

LEMMA A.2
There exists a constant C > 0 depending only on q such that for all a, b, ¢ and all
7€b®ec,

1@ Ve ®c,2)pi%— (P2 @ D(1@ V(b ®c,2)| < Cq= 2, (A4
dr(1® Ve ®c,2)V@®z,a+2),

(V@a®b,a+b)@ HV((a+b)®c,a+2z)) < Cq“H=972, (A5)
dr(V@a®b,a+b) @ N(1Q V(b ®c,2)),
Va+b)®c,a+2)V(a®z,a+2)*) < Cqv o2 (A.6)
Remark A.3

It is possible to prove Lemma A.1 from explicit formulas for the quantum 6 j-symbols
of SU,(2). We give a more direct approach, for which we need only know the quantum
3 j-symbols (i.e., the coefficient appearing in (7.3)).
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Before giving the proof of Lemma A.1, we introduce notation and several lemmas. It
follows from [6] (using [3], [4]) that A,(F') is monoidally equivalent with SU_,,(2),
where g is as before and FF = cl, ¢ = %1. So, we can perform all computations on
the intertwiners as if we are dealing with the representation theory of SU_.,(2).

Recall the explicit choices that can be made for the representation theory of A,(F)
in Section 7.

LEMMA A 4
There exists a constant C depending only on q such that

1(Pats ® 1)1y ® Phic) — Pasbicll < Cq”.

Proof
From (7.4), it follows that

Dottt = (Db @ Pt 1) Porett
[2][D]

m([’b Qpes1)(Lp— ®t®lc®t*)> (Pp+c®D).  (AT)

= (lb ® Pet1 —

In the same way, it follows that

Patbte+1 = (Pa @ Pp @ Pet1) Patbret
= <1a+b ® Pc+1—&(Pa(@l’b@mﬂ)(la—]®l‘®1b+c®l‘*)
[a+b+ctl]
[2][a + b]

— (P RPr® P, | _®t®1c®l*> atbtc®1).
[a+b+c+1](p Pr@Per1)agp—i ) ) (Pasbt )

Since both [2][a]/[a + b + ¢ + 1] and the difference |[2][a + b]/[a + b + ¢ + 1] —
[21[b]/1b 4 ¢ + 1]| = [2][allc + 1]/([b + ¢ + 1][a 4+ b + ¢ + 1]) can be estimated
by Cg’*¢ for a constant C depending only on ¢, we find

Pa+b+c+1
[2](p]

— (1, et ) Taggp—1 1 Q1. Q@ 1)) (Pagire @1
[b+c+1]( Q Py ® pey)Ugyp-1 @1 Q1. ® ))(P+b+®)

~ <1a+h ® Pe+1 —
(A.8)

with error at most Cg”*<.
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Now, put £(a, b, ¢) = |(1a ® Po+e)(Pats @ 1) = Patpcll- Using (A.7), we find

(1a ® Poter1)(Paspr @ Legr)

= <1a+b ® Pet1 — &(la QP Q Per)layp—1 @R 1. ® f*)>
[b+c+1]
X (1 ® Poye @ D(Ppassr @ 1eg1)
[2][b]
~ (1, ) — ——(1, ) Tgpp1 Q@ 1. @ t*
( +b @ Pe+i [b—l—c—l—l]( QP QPer)ayp—1 @R 1. ® ))

X (Patbre ® 1)

with error at most &(a, b, c)(1 + Dg®) because we can find D such that [2][b]/
[+ c + 1] < Dg°. Combining with (A.8), we find

e(a, b, c+1) < e(a, b, c)(1 + Dg°) + Cq"**.

By induction, one concludes that

c—1 c—1
e@.b,o) = Y (Cq"* [T (14 Dgh).
k=0 j=k+1

It follows that
ela,b,c) < qb<l_[(1 + Dqk)> (Z qu>.
k=0 k=0

This concludes the proof of the lemma. O

LEMMA A.5
There exists a constant C depending only on q such that

(431 $7]

foralla,b,r.

Proof
It is easy to find a constant C such that for all a, b and all k > 1, we have

[a +Kk][b + k] 2%
15—[a+b+k][k] <14+ Cqg™. (A.9)
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Because [[;—,(1 + Cq*) < +oo0, taking the product for k running from 1 to r yields
the result. U

Proof of Lemma A.l
It suffices to prove (A.1). We introduce the notation

0 E ]

Clab,r) = [a+b+r+1] (A.10)
’
We identify
(V(@+9)® (s +b),a+b) @1)(Lay, ® piie)
x(Vi@+s)®(s+b),a+b)®1)
= C(a, b, 5)(Pats ® 1)(1a @ ppic)(la @17 @ 1py)(Pats @ Psibie)
X (L ® 1 @ lpie)(la @ pote)(Paty & 1¢). (A.11)

But

C@, b, )1y ® 17 @ L) (Pass ® Posnic)la ® 1, ® lpi) = Y A pi®PHo.
zea®(b+c)

From (7.3), we get Ay py. = C(a, b, s)/C(a, b+c, s). Since C(a, b, s) is uniformly
bounded from above, we get a constant D depending only on g such that A, < D for
all z. Using Lemma A.4, we find a constant E such that forall z <a 4+ b + c,

I p2®7 (1, ® Prre)(Pats @ 1)l < EqP.

Asin (A.9), we find

| g  pHMlatbret1+k
Tla+b+1+klb+c+k] —

Taking the product for k running from 1 to s, we find a constant G such that

1—Gq2b§ C(a,b,s) -
C(a,b+c,s)

Combining all these estimates with (A.11), we have shown the existence of a constant
C depending only on ¢ such that

[(V@+9)® (s +b).a+ by ® 1)1y, ® pii=)
x(Va+5)® (s +b),a+b)®1) — papic| < (Cq").
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It follows that

[(Lats ® pUEN V@ +5) @ (s +b),a+b)® 1)
—(V@a+9)®(s+b),a+b)®1)paspic| < Cv2q".

This is the formula that we had to prove. i

LEMMA A.6
There exists a constant D > 0 depending only on g such that

DIEN = 1(Pa+s @ Ps4p)(1a @ 1, @ 1,)E] < [l

foralla,b,s and& € H, ® Hy.

Proof
Use the notation (A.10). Since
[a+b+r][l4r) [t r][r£P]

Cla.b,r) = [a+bfr+l] [atb+r]
r

it follows from Lemma A.5 that there exist constants C; and C, such that C; <
C(a, b, r) < C,. Observe

(Pa+xts @ Pstx+p)lapx @1 ® 1x+b)V((a +x)®(x+b),a+ b)
= C(a» b, x)1/2(pa+x+s 02 p.v+x+b)(1a+x QL& 1x+b)(la DL 1b)pa+b
= D(x,5)"*C(a, b, x)"*C(a, b, x + $)"'*V ((a+x+s) ® (s+x+b), a+b),

where D(x, s) = [x + 1][s + 1][x + s + 1]7". Also, since D(x, s) lies between two

constants, the lemma is proved. O
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