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Abstract. We introduce and investigate several quantum group dynamical notions for the purpose of
studying C∗-simplicity of discrete quantum groups via the theory of boundary actions. In particular we
define a quantum analogue of Powers’ Averaging Property (PAP) and a quantum analogue of strongly
faithful actions. We show that our quantum PAP implies C∗-simplicity and the uniqueness of σ-KMS
states, and that the existence of a strongly C∗-faithful quantum boundary action also implies C∗-
simplicity and, in the unimodular case, the quantum PAP. We illustrate these results in the case of
the unitary free quantum groups FUF by showing that they satisfy the quantum PAP and that they
act strongly C∗-faithfully on their quantum Gromov boundary. Moreover we prove that this particular
action of FUF is a quantum boundary action.

1. Introduction

A discrete group G is said to be C∗-simple if its reduced C∗-algebra C∗r (G) is simple, meaning
that it has no non-trivial proper closed two-sided ideals. The theory of C∗-simplicity began with the
work of Powers in [Pow75] in which he established that the free group on two generators satisfies a
certain strong group-theoretic averaging condition now known as Powers’ averaging property (PAP),
and showed that this condition implies C∗-simplicity. This strong averaging property has been a
prominent part of the theory since. Remarkably, it was later shown independently by Haagerup and
Kennedy respectively in [Haa17, Ken20] that Powers’ averaging property is equivalent to C∗-simplicity.

On the other hand, Kalantar and Kennedy discovered in [KK17] a surprising connection between
C∗-simplicity and the theory of boundary actions in topological group dynamics, which had been
initiated by Furstenberg in the 1950s. Recall that an action of a group G on a compact space is called
a boundary action if it is minimal and strongly proximal. Kalantar and Kennedy established more
precisely that a group G is C∗-simple if and only if it acts freely on its Furstenberg boundary ∂FG, if
and only if it admits some topologically free boundary action. A key observation for these results is
the fact, [Ham78, Remark 4], that the algebra of continuous functions on the Furstenberg boundary is
equivariantly isomorphic to Hamana’s injective envelope of C in the category of G-equivariant operator
systems.

A bit later it was proved in [BKKO17] that a group acts faithfully on its Furstenberg boundary if
and only if it has the unique trace property, i.e., its reduced C∗-algebra has a unique trace. These
results gave a solution to one direction of a long-standing open conjecture, namely that C∗-simplicity
implies the unique trace property — a counterexample to the converse was found in [LB17].

C∗-simplicity of a discrete quantum group G is defined exactly as in the classical case, using the
reduced C∗-algebra C∗r (G). The study of C∗-simplicity in this framework begins with Banica’s work
in [Ban97] where he proved that Wang’s free unitary discrete quantum groups FUF [Wan95, VDW96]
are C∗-simple by adapting Powers’ methods to the quantum setting. The free orthogonal quantum
groups FOF and the quantum groups of quantum automorphisms of finite-dimensional C∗-algebras
(equipped with their canonical trace) were later proved to be C∗-simple as well under some restrictions
on the parameter matrix F , resp. the dimension of the considered C∗-algebra, see [VV07, Bra13].

The theory of boundary actions has also been extended to the setting of discrete quantum groups
in [KKSV22], using the connection with Hamana’s work mentioned above: the quantum Furstenberg
boundary C(∂FG) is e.g. defined to be Hamana’s G-injective envelope of C. Then, in [KKSV22,
ASK24] it was shown that a unimodular discrete quantum group has the unique trace property if and
only if it acts faithfully on its Furstenberg boundary. Furthermore, in [ASK24] it was shown that for
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a discrete quantum group G that is either unimodular or exact, C∗-simplicity implies faithfullness of
the action on the Furstenberg boundary. In particular, in the unimodular case, C∗-simplicity implies
the unique trace property.

Despite these results, it seems that the theory of C∗-simplicity for quantum groups remains under-
developed. For instance, an appropriate analogue of the notion of (topological) freeness for actions of
discrete quantum groups on noncommutative C∗-algebras for the purposes of studying C∗-simplicity
has yet to appear in the literature. A version of Powers’ averaging property has not been developed
for quantum groups either. In this paper we aim to address this gap in the theory as follows:

— we propose quantum analogues of the PAP and of topologically free boundary actions,
— we prove that these properties imply C∗-simplicity,
— we prove that they are satisfied in our test case, namely the free unitary quantum groups FUF .

It is an important feature of our approach that we study these properties specially in relation to the
“rigidity” of G-equivariant ucp maps C∗r (G)→ C(∂FG). A deep result of Kennedy in [Ken20], used in
its proof of the equivalence between C∗-simplicty and the PAP, is that C∗-simplicity is characterized by
uniqueness of a G-equivariant ucp map C∗r (G)→ C(∂FG). This result has had various generalizations,
including a noncommutative analogue in [Zar19] where it was shown that a certain freeness property
for an action of a group G on a unital C∗-algebra A is equivalent to the uniqueness of conditional
expectations from the reduced crossed product A or G onto A. Concerning a more general context
for such problems, there has been interest on the “rigidity” (e.g. uniqueness) of (pseudo)-conditional
expectations A→ B of a C∗-inclusion A ⊆ B, cf. [Pit17, PSZ23, PZ15, Zar19].

Our first observation is in Proposition 2.1, which states that G is C∗-simple if and only if every
G-equivariant ucp map C∗r (G) → C(∂FG) is faithful. We consider also two additional properties:
the uniqueness of G-equivariant ucp maps C∗r (G) → C(∂FG), and when all G-equivariant ucp maps
C∗r (G)→ C(∂FG) factor the canonical Haar state h : C∗r (G)→ C in the sense of Definition 3.21. Note
that we always have the canonical ucp map a 7→ h(a)1 from C∗r (G) to C(∂FG), which is faithful and
factors h, but it is G-equivariant if and only if G is unimodular — this is one of the difficulties that
are specific to the quantum setting.

We consider two versions of Powers’ averaging property that generalize the PAP for groups, namely
the PAP and PAPh (see Definition 3.3), where we note that PAPh =⇒ PAP. Again in the unimodular
case we have the simplification PAP = PAPh. We observe that the PAP implies that G is C∗-simple
and the PAPh implies additionally that C∗r (G) has a unique σ-KMS state (Corollary 3.9). Also, we
observe that what Banica really showed in [Ban97] is the PAPh for the free unitary quantum groups
FUF (Propostion 3.8).

One of Kennedy’s main results of [Ken20] states that a group has Power’s averaging property if
and only if the only G-boundary contained in S(C∗r (G)) is trivial. In the quantum setting it doesn’t
make sense to consider G-boundaries inside S(C∗r (G)) as the G-boundaries may be noncommutative.
We, however, are able to obtain the following quantum analogue of Kennedy’s result by replacing
G-boundaries with Gh-boundary envelopes (see Definitions 3.11 and 3.13).

Theorem 3.17. A discrete quantum group G has the PAPh if and only if the only Gh-boundary
envelope in S(C∗r (G)) is trivial.

Kennedy observed in [Ken20] that the G-boundaries inside S(C∗r (G)) are in bijection with G-
equivariant ucp maps C∗r (G) → C(∂FG). It is with this observation that he was able to characterize
the Powers’ averaging property with the uniqueness of G-equivariant ucp maps C∗r (G) → C(∂FG).
We make similar observations in our work and, as an application of Theorem 3.17, we obtain the
following.

Corollary 3.24.
(1) A discrete quantum group G has the PAP iff every G-equivariant ucp map C∗r (G)→ C(∂FG)

factors the Haar state.
(2) If G is unimodular, then it has the PAP iff there is a unique G-equivariant ucp map C∗r (G)→

C(∂FG).

Afterwards, we investigate a notion of freeness for quantum group actions which generalizes the
notion of a group acting freely on a C∗-algebra in the sense of [Zar19]. In fact, we prove that an action
G y A is free if and only if there exists a unique conditional expectation Aor G→ A (Theorem 4.3),
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generalizing one of the main results of [Zar19]. We note, however, that this result implies that
G y C(∂FG) is never free when G is non-unimodular (see Corollary 4.4). This observation suggests
that this might not be the right notion to consider in the theory of C∗-simplicity. On the other hand,
we apply the techniques used in the proof of Theorem 4.3 to prove that faithfulness of an action G y A
is equivalent to uniqueness of conditional expectations A or G → A that restrict to states on C∗r (G)
(Theorem 4.8).

In the search of a notion in quantum topological dynamics that would characterize, or at least imply,
C∗-simplicity, while allowing for boundary actions of non-unimodular quantum groups, we introduce
strong C∗-faithfulness for actions of discrete quantum groups on C∗-algebras (Definition 4.10). In the
classical case of discrete groups acting on locally compact spaces, it recovers strong faithfulness as
considered e.g. in [dlH85, Lemma 4] and [FLMMS22, Section 2.1]. Note that in this classical setting,
a minimal group action on a compact space is strongly faithful if and only if it is topologically free,
and recall that boundary actions are in particular compact and minimal, so that the main result of
[KK17] can be rephrased by saying that a discrete group G is C∗-simple if and only if it admits a
strongly faithful boundary action. In the quantum setting we are able to prove one direction of that
result:

Theorem 4.20 and Corollary 4.21. If G admits a G-boundary with strongly C∗-faithful action,
then G is has the PAP. In particular, G is C∗-simple.

We finally come back to our test example FUF with the aim of showing that it satisfies the hypoth-
esis of the above theorem. We show that the action on its quantum Gromov boundary C(∂GFUF ),
introduced in [VVV10], is strongly C∗-faithful by using a combinatorial trick uncovered by Banica in
[Ban97]. On the other hand, the fact that C(∂GFUF ) is a G-boundary has been established in [HHN22]
but only with respect to the natural action of the Drinfeld double G = D(FUF ). We upgrade this
result by showing that C(∂GFUF ) is in fact already an FUF -boundary — this is much more intricate
and relies on the unique stationarity method used in [KKSV22] in the case of FOF . We prove more
precisely the following.

Theorem 5.5. Let F ∈ GLN (C) with N ≥ 3. Then C(∂GFUF ) has a unique stationary state with
respect to the “nearest neighboor” quantum random walk on FUF .

As an intermediate step for the non-unimodular case we establish a non-atomicity result for the
restriction of stationary states to the classical Gromov boundary of FUF . Taking into account the
results of [KKSV22] and [VVV10], the above theorem implies that C(∂GFUF ) is indeed an FUF -
boundary, and the strong C∗-faithfulness property together with our general results yield a new
“dynamical proof” of C∗-simplicity of FUF when N ≥ 3.

We complete the introduction by presenting the layout of this paper. In Section 2 we discuss the
preliminaries on discrete quantum groups, boundary actions, free unitary discrete quantum groups,
and C∗-simplicity. In Section 3 we develop notions of Powers’ averaging property for discrete quantum
groups. Here, we prove a characterization in terms of “boundary envelopes” in the state space of C∗r (G)
and, in the unimodular case, a characterization in terms of G-equivariant ucp maps C∗r (G)→ C(∂FG)
as discussed above. In Section 4 we develop a notion of a free action and a notion of a strong C∗-
faithful action, and investigate the connections with C∗-simplicity and the PAP. Finally, in Section 5
we prove that the Gromov boundary of FUF is a FUF -boundary when N ≥ 3.

2. Preliminaries

2.1. Discrete quantum groups and their boundaries. Discrete quantum groups were introduced
as duals of compact quantum groups in [PW90] ; an operator-theoretic characterization is given in
[BS93] at the level of the associated multiplicative unitary, and algebraic characterizations are given
in [ER94] and [VD96] at the level of the associated algebras. We shall mostly follow the notation and
conventions established in [KV00] for general locally compact quantum groups.

So let G be locally compact quantum group, given by the reduced Hopf-C∗-algebra c0(G). We
choose a GNS space (H,Λ) for the left Haar weight hL of G and construct the left multiplicative
unitary W ∈ B(H ⊗H) of G, given by the formula W ∗(Λ(f) ⊗ Λ(g)) = (Λ ⊗ Λ)(∆(g)(f ⊗ 1)) for f ,
g ∈ cc(G). One can the recover c0(G) as the norm closure of {(id ⊗ ω)(W ) | ω ∈ B(H)∗}, equipped
with the coproduct ∆(f) = W ∗(1 ⊗ f)W . As the notation suggests, we assume G and W to be of
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discrete type, i.e. there exists a unit vector η ∈ H such that W (η ⊗ ζ) = η ⊗ ζ for all ζ ∈ H. The
C∗-algebra c0(G) then contains a distinguished dense multiplier Hopf ∗-algebra [VD94] that we denote
cc(G).

In this article, we are interested in the structure of the reduced group C∗-algebra C∗r (G) of G, defined
as the norm closure of {(ω ⊗ id)(W ) | ω ∈ B(H)∗} in B(H). We have then W ∈ M(c0(G) ⊗ C∗r (G))
and we endow C∗r (G) with the adjoint action of G given by the coaction ad : C∗r (G) → M(c0(G) ⊗
C∗r (G)), x 7→ W ∗(1 ⊗ x)W . Sometimes it will be more convenient to use the adjoint action of the
opposite discrete quantum group Gop given by the ∗-homomorphism adop : C∗r (G) → M(c0(G) ⊗
C∗r (G)), x 7→ W (1 ⊗ x)W ∗, which is indeed a coaction for the opposite coproduct ∆op = σ ◦ ∆
on c0(Gop) = c0(G). Furthermore, the adjoint actions of G and Gop are related by the equation

adop(x) = (R⊗R̂) ad(R̂(x)), where R and R̂ are the unitary antipodes of c0(G) and C∗r (G) respectively,

satisfying the identity (R⊗ R̂)(W ) = W .

We denote Corep(G) the category of non-degenerate finite-dimensional ∗-representations of c0(G),
and Irr(G) = I the set of irreducible objects up to equivalence. Note that such representations
π : c0(G) → B(Hπ) correspond to unitary elements w = (π ⊗ id)(W ) ∈ B(Hw) ⊗ C∗r (G), where
Hw = Hπ, and we will in fact rather use this second picture. The category Corep(G) has a natural
monoidal structure given by π⊗ ρ := (π⊗ ρ) ◦∆ and v⊗w := v13w23. Since G is discrete, we have an
isomorphism c0(G) '

⊕c0
w∈I B(Hw) such that W =

⊕
w∈I w, and we denote `∞(G) = M(c0(G)) the

corresponding `∞-direct sum. We also denote pw ∈ c0(G) the minimal central projection corresponding
to id ∈ B(Hw) in this isomorphism.

The monoidal category Corep(G) is rigid, in particular we can find for each v ∈ Corep(G) another
corepresentation v̄, unique up to isomorphism, and morphisms tv : C → Hv ⊗ Hv̄, sv : C → Hv̄ →
Hv satisfying the conjugate equations and normalized so that t∗vtv = s∗vsv =: dimq(v). If v = w
is irreducible, these morphisms are unique up to a phase and we consider the associated left and
right quantum traces, qTrw(a) = t∗w(a ⊗ 1)tw and qTr′w(a) = s∗w(1 ⊗ a)sw, for a ∈ B(Hw), as well
as the corresponding states qtrw = (dimq w)−1 qTrw, qtr′w = (dimq w)−1 qTr′w. We can also write
qTrw(a) = Tr(Qwa), qTr′w(a) = Tr(Q−1

w a) for a unique positive matrix Qw ∈ B(Hw). Compare
[VV07, Notation 1.11], where the vectors tw, sw are however normalized differently. Note that the
conjugate equations yield (id⊗ qTrw)(twt

∗
w) = idw, whereas we have (qTrw⊗id)(twt

∗
w) = Q−2

w .
Using this data we can write down explicitly the left- and right-invariant Haar weights on c0(G):

hL(a) =
∑

dimq(w)2 qtrw(aw) and hR(a) =
∑

dimq(w)2 qtr′w(aw),

for a = (aw)w ∈ cc(G). Compare [VV07, Proposition 1.12]. Note that since we have hL(ab) =
hL(bS2(a)) in any discrete quantum group algebra, the above formula implies S2(a) = QwaQ

−1
w for

a ∈ B(Hw) ⊂ cc(G), and we have S(Qw) = Q−1
w = S−1(Qw). Recall also that if we switch from G to

Gop we have to exchange hL with hR, and to replace S with S−1 (but the unitary antipode R = R−1

is unchanged).

There are two ways to endow C∗r (G) with the structure of a Woronowicz C∗-algebra, we choose the
coproduct ∆ : C∗r (G)→ C∗r (G)⊗ C∗r (G) such that (id⊗∆)(W ) = W12W13, as in [VV07]. We denote

Ĝ the compact quantum group given by Cr(Ĝ) = C∗r (G) and ∆. Then the unitaries W and w ∈ I
above are corepresentations of (C∗r (G),∆) in the sense of [Wor87] and Corep(G) identifies with the

category of finite-dimensional unitary representations of Ĝ. We denote C[G] = O(Ĝ) the canonical
dense Hopf-∗-subalgebra spanned by coefficients of finite-dimensional corepresentations.

We denote h ∈ C∗r (G)∗ the Haar state, and we can write down the Woronowicz-Peter-Weyl orthog-
onality relations using the matricial states qtr, qtr′ introduced above:

(id⊗ h)(w(a⊗ 1)w∗) = qtrw(a), (id⊗ h)(w∗(a⊗ 1)w) = qtr′w(a),

for a ∈ B(Hw), w ∈ I. See [VV07], Notation 1.11. We recognize the modular matrices Fw = Qw from
[Wor87] for (C∗r (G),∆), which are connected to Woronowicz’ characters fz ∈ C[G]∗ by the formula
Qzw = (id⊗ fz)(w).

Recall that the modular group of h is implemented by these characters, more precisely we have
h(xy) = h(yσ−i(x)) if we put σz(x) = fiz ∗ x ∗ fiz for x, y ∈ C[G]. This yields (id ⊗ h)((1 ⊗ y)w) =
(id⊗ h)((Q−1

w ⊗ 1)w(Q−1
w ⊗ 1)(1⊗ y)) for w ∈ I. Since on the other hand qtrw(ba) = qtrw(Q−1

w aQub),
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we obtain

(qtrw⊗h)(w∗(1⊗ y)w) = (qtrw⊗h)((Q−2
w ⊗ 1)ww∗(1⊗ y)) = qtr′w(1)h(y) = h(y).

In terms of the adjoint action ad this can be written (qtrw⊗h) ad = h. Similarly one can check that
(qtr′w⊗h) adop = h.

An action of a discrete quantum group G on a C∗-algebra A is given by a non-degenerate ∗-
homomorphism α : A → M(c0(G) ⊗ A) such that (id ⊗ α)α = (∆ ⊗ id)α and α(A)(c0(G) ⊗ 1) is
a dense subspace of c0(G) ⊗ A. We will also say that A is a G-C∗-algebra. For w ∈ I we denote
αw = (pw ⊗ 1)α : A → M(B(Hw) ⊗ A). A completely positive (cp) map Φ : A → B between G-
C∗-algebras (A,α), (B, β) is called G-equivariant if (id ⊗ Φ)α = βΦ. For f ∈ `1(G) = c0(G)∗ and
a ∈ A we denote f ∗ a = (f ⊗ id)α(a) ∈ M(A). For ν ∈ A∗ we consider the Poisson transform
Pν = (id ⊗ ν)α : A → M(c0(G)). Throughout we will assume that A is unital unless otherwise
specified.

The reduced crossed product A or G is the closed subspace of M(K(H) ⊗ A) generated by the
elements α(a)(x ⊗ 1) with a ∈ A, x ∈ C∗r (G). It is equipped with an action of the dual of G
and, more importantly in this paper, by the action of G associated to the map adA : A or G →
M(c0(G)⊗ (AorG)), X 7→ (W ∗⊗1)(1⊗X)(W ⊗1). The non-degenerate injective ∗-homomorphisms
α : A → A or G and x ∈ C∗r (G) → x ⊗ 1 ∈ A or G are then equivariant with respect to adA, α and
ad. If there is no risk of confusion we will denote adA = ad.

We say that a unital G-C∗-algebra A is a G-boundary if for every state ν ∈ S(A) the Poisson map
Pν is completely isometric (ci). Equivalently, every unital cp (ucp) equivariant map Φ : A→ B to any
unital G-C∗-algebra B is completely isometric, cf [KKSV22, Section 4]. There exists a G-boundary
in which every G-boundary embeds equivariantly and completely isometrically, and it is unique up
to (unique) equivariant ∗-isomorphism. It is called the Furstenberg boundary of G, denoted C(∂FG)
[KKSV22, Theorem 4.16]. Moreover, this G-boundary is G-injective, meaning that for any equivariant
uci map Φ : A→ B, every equivariant ucp map ψ : A→ C(∂FG) extends to Ψ : B → C(∂FG).

As in the classical case, a discrete quantum group G is called C∗-simple if C∗r (G) is a simple C∗-
algebra. In the classical case it is known that there are enough ucp maps Ψ : C∗r (G) → B to detect
C∗-simplicity — see, for example, [KS22, Proposition 3.1] and for a generalization to (noncommutative)
crossed products (of groups) see [KS19, Theorem 6.6]. This fact holds in the setting of DQGs as well.

More precisely, for a G-equivariant ucp map Ψ : A → B we denote IΨ = {a ∈ A : Ψ(a∗a) = 0},
which is automatically a closed left ideal by the Schwarz inequality for ucp maps. Recall that Ψ is
called faithful if IΨ = {0}.

Proposition 2.1. Let G be a DQG and (A,α) a G-C∗-algebra. For every G-equivariant ucp map
Ψ : C∗r (G) → A, IΨ is a two-sided ideal. Moreover, for every closed two-sided ideal I ( C∗r (G) there
exists a G-equivariant ucp map Φ : C∗r (G)→ C(∂FG) such that I ⊆ IΦ. In particular, G is C∗-simple
if and only if every G-equivariant ucp map C∗r (G)→ C(∂FG) is faithful.

Proof. Take u ∈ Irr(G) and unit vectors ζ, ξ ∈ Hu. For x ∈ IΨ we can write

0 = (ωζ ⊗ id)α(Ψ(x∗x)) = (ωζ ⊗Ψ)(ad(x∗x)) = (ωζ ⊗Ψ)(u∗(1⊗ x∗x)u))

≥ (ωζ ⊗Ψ)(u∗(ξξ∗ ⊗ x∗x)u)) = Ψ(u∗ζ,ξx
∗xuζ,ξ).

Hence xuζ,ξ ∈ IΨ and since the coefficients uζ,ξ = (ξ∗⊗ 1)u(ζ ⊗ 1) span a dense subspace of C∗r (G) we
conclude that IΨ is a right ideal.

If I ⊂ C∗r (G) is a bilateral ideal, we have ad(I)(c0(G)⊗ C∗r (G)) = W ∗(1⊗ I)W (c0(G)⊗ C∗r (G)) ⊂
c0(G)⊗ I, since W ∈M(c0(G)⊗C∗r (G)). Denoting q : C∗r (G)→ A = C∗r (G)/I the quotient map, this
shows that (id⊗ q) ad factors to a coaction α on A such that q is equivariant. Applying G-injectivity
of C(∂FG) to the unital inclusion C ⊂ A and the canonical unital map C → C(∂FG) we obtain a
G-equivariant ucp map θ : A → C(∂FG). Then Φ = θ ◦ q is a G-equivariant ucp map such that
I ⊆ IΦ. �

2.2. The free unitary quantum groups and their boundary. Most examples of discrete quantum
groups are in fact defined as duals of compact matrix quantum groups. For instance, fix an integer
N ≥ 1 and F ∈ GLN (C). The universal unitary compact quantum group U+

F is the compact quantum

group given by the universal unital C∗-algebra Cu(U+
F ) generated by the entries of unitary matrix u ∈
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MN (Cu(U+
F )) and the relations making FūF−1 a unitary matrix as well, endowed with the coproduct

such that ∆(uij) =
∑
uik ⊗ ukj [Wan95, VDW96]. Identifying MN (Cu(U+

F )) with B(CN )⊗ Cu(U+
F ),

the matrix u becomes a representation of U+
F .

The Woronowicz C∗-algebra Cu(U+
F ) has a reduced version Cr(U+

F ), and up to isomorphism there is
a unique discrete quantum group FUF , given by a Hopf-C∗-algebra (c0(FUF ),∆), such that following
the constructions explained previously we have (C∗r (FUF ),∆) ' (Cr(U+

F ),∆). We will accordingly

denote C∗(FUF ) = Cu(U+
F ), so that we can write u ∈MN (C)⊗C∗(FUF ). Note that FUF is unimodular

if and only if F is a scalar multiple of a unitary matrix.

The category of corepresentations of FUF has been computed by Banica [Ban97]. The elements
of I = Irr(G) can be labelled by words x on the letters u, ū in such a way that the empty word 1
corresponds to the trivial corepresentation, the one letter words u and ū correspond to the fundamental
corepresentation (uij) and its unitary dual F (u∗ij)F

−1, and we have the recursive fusion rules

(1)
xu⊗ uy ' xuuy, xu⊗ ūy ' xuūy ⊕ x⊗ y,
xū⊗ ūy ' xūūy, xū⊗ uy ' xūuy ⊕ x⊗ y.

In particular w is a subobject of x ⊗ y iff we can write x = x′v, y = v̄y′ and w = x′y′, and for
x, y ∈ I \ {1} we have xy ' x ⊗ y iff the last letter of x equals the first of y. Note that we
identify a word in u, ū and a representant for the corresponding equivalence class of irreducible
corepresentations. We denote px ∈ `∞(G) the minimal central projection corresponding to x, and this
yields an identification Z(`∞(G)) = `∞(I). The length of x ∈ I as a word on u, ū is denoted |x| and
we put In = {x ∈ I | |x| = n}, pn =

∑
|x|=n px ∈ `∞(G). We denote z ≥ x if z = xy for some y ∈ I,

and we put I(x) = {z ∈ I | z ≥ x}.
It follows from the fusion rules that inclusions of irreducibles x ⊂ y⊗ z are always multiplicity free

and we choose corresponding isometric intertwiners V (x, y ⊗ z), which are unique up to a phase. We
also denote P (x, y ⊗ z) = V (x, y ⊗ z)V (x, y ⊗ z)∗ ∈ B(Hy ⊗Hz) the corresponding range projections,
and we put P (x, y ⊗ z) = 0 if x 6⊂ y ⊗ z. These intertwiners can be used to compute the coproduct of
c0(G): for a ∈ pxc0(G) ' B(Hx) and y, z ∈ I we have

(py ⊗ pz)∆(a) = V (x, y ⊗ z)aV (x, y ⊗ z)∗.

Let q be the unique number in ]0, 1] such that q + q−1 = dimq(u) = dimq(ū). For a letter α = u

or ū, denote α(k) = αᾱα . . . (k terms) and α(∞) the infinite alternating word starting with α. We

have ᾱ ⊗ α(k) ' ᾱ(k+1) ⊕ ᾱ(k−1) for k ≥ 1 and it follows easily that dimq(α
(k)) = [k + 1]q, using the

q-numbers [n]q = (q−n − qn)/(q−1 − q). Then, decomposing x ∈ I as x = x1 ⊗ · · · ⊗ xp where each xi
is of the form α(k), we obtain dimq(x) = [|x1|+ 1]q · · · [|xp|+ 1]q.

We will need the following lemma about Woronowicz’ modular matrices Qx.

Lemma 2.2. Denote ρ = max(‖Qu‖, ‖Qū‖). For all x ∈ I we have ‖Qx‖/ dimq(x) ≤ (qρ)|x| and

‖Q−1
x ‖/dimq(x) ≤ (qρ)|x|. Moreover if N ≥ 3 we have qρ < 1.

Proof. If x = α1 · · ·αn, with αi ∈ {u, ū}, n = |x|, we have in particular x ⊂ v := α1 ⊗ · · · ⊗ αn, hence
Qx appears as a diagonal block of Qα1 ⊗ · · · ⊗Qαn via the decomposition of v into irreducibles. As a
result ‖Qx‖ ≤

∏n
1 ‖Qαi‖ ≤ ρn. The same reasoning holds for Q−1

x with the Q−1
αi ’s, and since Qū = Q̄−1

u

we get the same upper bound. On the other hand we have [k + 1]q = q−k(1 − q2k+2)/(1 − q2) ≥ q−k

for all k, hence dimq(x) ≥ q−|x| for all x ∈ I. In particular ‖Qx‖/dimq(x) ≤ (qρ)|x|.
Since Tr(Qu) = Tr(Q−1

u ) we must have ‖Qu‖, ‖Q−1
u ‖ ≥ 1. Assume N ≥ 3. If ‖Qu‖ ≥ ‖Q−1

u ‖
we have q + q−1 = Tr(Qu) > ‖Qu‖ + ‖Q−1

u ‖−1 ≥ ‖Qu‖ + ‖Qu‖−1, since Qu has at least a third
eigenvalue beyond ‖Qu‖ and ‖Q−1

u ‖−1. The same holds if ‖Qu‖ ≤ ‖Q−1
u ‖ by writing instead q+ q−1 =

Tr(Q−1
u ) > ‖Q−1

u ‖+ ‖Qu‖−1 ≥ ‖Qu‖+ ‖Qu‖−1. Since t 7→ t+ t−1 is strictly increasing on [1,+∞[ this
implies q−1 > ‖Qu‖. Since we also have q + q−1 = dimq(ū) = Tr(Qū) = Tr(Q−1

ū ), we have similarly
q−1 > ‖Qū‖, hence q−1 > ρ. �



C∗-SIMPLICITY AND BOUNDARY ACTIONS OF DISCRETE QUANTUM GROUPS 7

The construction of the Gromov compactification βGFUF of FUF relies on the the following ucp
maps, defined for x, y ∈ Irr(G) and m ∈ N:

ψx,xy : B(Hx)→ B(Hxy), a 7→ V (xy, x⊗ y)∗(a⊗ idy)V (xy, x⊗ y),

ψl,m =
∑

|x|=l
|y|=m−l

ψx,xy : pl`
∞(G)→ pm`

∞(G) for m ≥ l,

ψx,∞ =
∑
y∈I

ψx,xy : B(Hx)→ `∞(G), ψm,∞ =
∑
|x|=m

ψx,∞ : pm`
∞(G)→ `∞(G).

These maps define an inductive system, in the sense that ψxy,xyz◦ψx,xy = ψx,xyz. The quantum Gromov
compactification βGFUF is then given by the unital C∗-subalgebra B = C(βGFUF ) = B̄0 ⊂ `∞(G),
which is the closure of

B0 = {ψm,∞(a);m ∈ N, a ∈ pm`∞(G)}.
Finally the quantum Gromov boundary of FUF is given by C(∂GFUF ) = B∞ = B/c0(G), see [VV07,
VVV10].

Note that as a free monoid the set I has a natural Cayley tree structure (with respect to the
generating set {u, ū}), and recall that Z(`∞(FUF )) ' `∞(I). The restriction of ψx,xy to the center is
the canonical map idx 7→ idxy and it then follows that `∞(I) ∩ C(βGFUF ) = C(βI), where βI is the
usual compactification of the tree I and C(βI) is identified to a subalgebra of `∞(I) via the restriction
map. The boundary ∂I = βI \ I is canonically identified with the set of infinite words in u, ū. Then
C(∂GFUF ) is a continuous field of unital C∗-algebras over ∂I.

We will make important use of the central projections πx = ψx,∞(px) ∈ C(βGFUF ), for x ∈ I.
More precisely we have πx =

∑
y∈I pxy, since V (xy, x ⊗ y)∗V (xy, x ⊗ y) = idxy. This is a projection

in `∞(I) ∩ C(βGFUF ), whose image in C(∂I) corresponds to the subset ∂I(x) ⊂ ∂I of infinite words
starting with x. Any state ν on C(∂GFUF ) induces by restriction a probability measure on ∂I that
we denote νI . We have then νI(∂I(x)) = ν(πx) by definition.

The action β : B →M(c0(G)⊗B) of G on B is just given by the restriction of the comultiplication.
We have in particular (pz ⊗ pt)β(πx) =

∑
y∈I P (xy, z ⊗ t), which is non-zero iff z ⊗ t contains an

irreducible corepresentation starting with x. We will need the following description of the boundary
action, which is implicit in [VVV10]:

Lemma 2.3. Fix k, n ∈ N and ε > 0. Denote p≥r =
∑

l≥r pl. Then there exists r ≥ k + n such that

for all ak ∈ pk`∞(FUF ), ‖ak‖ ≤ 1 we have

‖(pn ⊗ p≥r)∆(ψk,∞(ak))− (pn ⊗ ψr,∞)(b)‖ ≤ ε,

where b =
∑n

l=0 bn+r−2l, bs = (pn ⊗ pr)∆(ψk,s(ak)).

Proof. The element ak can be decomposed into a sum of 2k elements ax ∈ B(Hx) with x ∈ Ik. Up to
replacing ε by 2−kε and using the triangle inequality we can assume ak = ax for some x ∈ Ik. Denote
ψx,∞(ax) = a, so that at = ψx,t(ax) if t ≥ x and at = 0 else — in particular ax = pxa and ak = pka
as expected. Take r ≥ k + n. We first consider (py ⊗ pz)∆(a) with |y| = n, z = z1z2, |z1| = r. Since
r ≥ n, subobjects of y ⊗ z must be of the form tz2 with t ⊂ y ⊗ z1, hence we have

(py ⊗ pz)∆(a) =
∑

tz2⊂y⊗z1z2

V (tz2, y ⊗ z1z2)atz2V (tz2, y ⊗ z1z2)∗.

Since |t| ≥ |z1| − |y| ≥ |x| we have atz2 = ψt,tz2(at) — both terms vanish unless t ≥ x. Recall
from [VV08, Lemma 7.8.3, equation (8.47)] that we have V (tz2, y ⊗ z1z2)V (tz2, t⊗ z2)∗ ' µ(idy ⊗
V (z1z2, z1 ⊗ z2)∗) (V (t, y ⊗ z1) ⊗ idz2) up to Cq(|t|+|z1|−|y|)/2 ≤ Cq(r−n)/2 in operator norm, for some
µ ∈ C such that |µ| = 1. This yields

V (tz2, y ⊗ z1z2)atz2V (tz2, y ⊗ z1z2)∗ =

= V (tz2, y ⊗ z1z2)V (tz2, t⊗ z2)∗(at ⊗ idz2)V (tz2, t⊗ z2)V (tz2, y ⊗ z1z2)∗

' (idy ⊗ ψz1,z1z2)(V (t, y ⊗ z1)atV (t, y ⊗ z1)∗) = (py ⊗ pzψr,|z|)∆(at)

up to 2Cq(r−n)/2. Putting s = |t|, t is the only subobject of y⊗z1 of length s, so that (py⊗pz1)∆(at) =
(py ⊗ pz1)∆(psψx,∞(ax)) = (py ⊗ pz1)bs. Summing over t we obtain

‖(py ⊗ pz)∆(a)− (py ⊗ pzψr,|z|)(b)‖ ≤ 2C(n+ 1)q(r−n)/2,
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since there are at most n+ 1 possible values of s. For r large enough this yields the result, by taking
the supremum over y and z. �

3. The Powers Averaging Property

3.1. Definition and Basic Results. Powers’ averaging property is a combinatorial technique origi-
nally used by Powers in [Pow75] to prove that free groups are C∗-simple with the unique trace property.
Later, it was shown independently by Kennedy [Ken20] and Haagerup [Haa17] that the converse holds,
namely that every C∗-simple group has Powers’ averaging property. We introduce below an analogue
of Powers’ averaging property for discrete quantum groups and show that it still implies C∗-simplicity.

Denote Prob(G) the convex space of normal states on `∞(G) and Probc(G) the subspace of states
with finite support, i.e. states f for which there exists a projection p ∈ cc(G) with f(p) = 1. We denote
h ∈ S(C∗r (G)) the Haar state and we consider the following convolution operations, for x ∈ C∗r (G),
f ∈ Prob(G), µ ∈ S(C∗r (G)): x ∗ f = (f ⊗ id) ad(x), f ∗ µ = (f ⊗ µ) ◦ ad, µ ∗ x = (id ⊗ µ)∆(x),
x ∗ µ = (µ ⊗ id)∆(x). The state µ on C∗r (G) is called G-invariant if we have f ∗ µ = µ for all
f ∈ Prob(G).

Definition 3.1. We define Probh(G) = {f ∈ Prob(G) : f ∗ h = h} and Probch(G) = Probh(G) ∩
Probc(G).

From the preliminaries we have important examples of states in Probch(G), namely the quantum
traces qtrw. Before defining the PAP let us note the following stronger stabilization property for
elements of Probch(G).

Lemma 3.2. Let G be a DQG. If f ∈ Probch(G) then f ∗ τ = τ for every σ-KMS state τ ∈ S(C∗r (G)).

Proof. Note that we have f ∈ Probh(G) iff h(x) = (f ⊗ h)(W ∗(1 ⊗ x)W ) for all x ∈ C[G]. Assume
that f ∈ Probc(G). Recall that the KMS group of h is implemented by the Woronowicz characters
fz ∈ C[G]∗ so that h(xy) = h((f−1∗y∗f−1)x) for all x ∈ C∗r (G), y ∈ C[G]. Denote Q = (id⊗f1)(W ) =
(Qw)w, which is a positive unbounded multiplier of c0(G). We will invoke Sweedler notation and write
W = W(1) ⊗W(2). Then we have, since (S ⊗ id)(W ) = W ∗ and (S ⊗ id)(W ∗) = (Q⊗ 1)W (Q−1 ⊗ 1):

(f ⊗ h)(W ∗(1⊗ x)W ) = (f ⊗ h)((1⊗W(2))W
∗(Q−1W(1)Q

−1 ⊗ x))

= (fS ⊗ h)(W ∗(Q2 ⊗ 1)W (1⊗ x))

for all x ∈ C∗r (G). Hence f ∈ Probc(G) belongs to Probch(G) if and only if

(2) (fS ⊗ id)(W ∗(Q2 ⊗ 1)W ) = 1.

If this holds, we can roll back the computation with any σ-KMS state τ instead of h, which yields the
result. �

From (2) we also see that we have Probch(G) = Probc(G) iff W ∗(Q ⊗ 1)W = 1 iff Q = 1, i.e. G
is unimodular — this has been known at least since [Izu02]. Note that Probc(G) is norm dense in
Prob(G), but the corresponding result for Probh(G) is not clear.

Definition 3.3. We say that G has the Powers averaging property PAP, resp. PAPh, if for every
x = x∗ ∈ C∗r (G) we have

inf
f∈P
‖x ∗ f − h(x)1‖ = 0,

where P = Probc(G), resp. Probch(G). Note that PAPh =⇒ PAP.

Remark 3.4. Let G = G be a discrete group. The classical PAP, as formulated by Powers in [Pow75],
and the formulation used in [Ken20, Haa17], is stated as follows: for every x = x∗ ∈ C∗r (G),

h(x)1 ∈ conv{λ(s)xλ(s)∗ : s ∈ G}.
We can see that this formulation of the PAP is equivalent to the one given in Definition 3.1. Indeed,
for s ∈ G and x ∈ C∗r (G), x ∗ δs = λ(s)xλ(s)∗ and so

conv{λ(s)xλ(s)∗ : s ∈ G} = x ∗ Prob(G).

In Definitions 3.1 and 3.3 we could have used the coaction adop of c0(Gop), instead of ad. Let us
show that the resulting notions would have been the same. For this we denote ∗op the convolution
products associated with adop, we denote Probch(Gop) = {f ∈ Probc(G) : f ∗op h = h} and we say e.g.
that Gop has the PAPh if inf{‖x ∗op f − h(x)1‖ : f ∈ Probch(Gop)} = 0.
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Lemma 3.5. A discrete quantum group G has the PAP, resp. PAPh iff Gop has the PAP, resp. PAPh.

Proof. According to the formula adop = (R⊗ R̂) ◦ ad ◦R̂ we have

x ∗op f := (f ⊗ id) adop(x) = R̂(R̂(x) ∗ fR).

Since R̂ is a ∗-antiautomorphism such that h◦R̂ = h, it follows that ‖x∗opf−h(x)1‖ = ‖x′∗fR−h(x′)‖
for x′ = R̂(x). It clearly follows that the PAP is the same for G and Gop. For the PAPh it remains to
check that {f ◦ R : f ∈ Probch(Gop)} = Probch(G), which again follows from the connection between

ad and adop and the property h ◦ R̂ = h. �

Lemma 3.6. A DQG G has the PAP, resp. the PAPh, if and only if for every x = x∗ ∈ C[G]∩ker(h)
we have

inf
f∈P
‖x ∗ f‖ = 0,

where P = Prob(G), resp. Probch(G).

Proof. The direct implication is obvious. For the reverse one, we first restrict from C∗r (G) to C[G] by
density and because ‖x ∗ f‖ ≤ ‖x‖ for any x ∈ C∗r (G), f ∈ Prob(G). Then we apply the assumption
to x− h(x)1 and observe that (x− h(x)1) ∗ f = x ∗ f − h(x)1. �

In the case of the PAPh we can remove the limitation to self-adjoint elements.

Lemma 3.7. A DQG G has the PAPh if and only if for every x ∈ C∗r (G),

inf
f∈P
‖x ∗ f − h(x)1‖ = 0,

where P = Probch(G).

Proof. Assume that G has the PAPh. Let x = x1 + ix2 ∈ C∗r (G) with x1 = x∗1, x2 = x∗2 and fix ε > 0.
Find f1 ∈ P such that ‖x1 ∗ f1−h(x1)‖ < ε. Next, put x′2 = x2 ∗ f1 and find f2 ∈ Probh(G) such that
‖x′2 ∗ f2 − h(x′2)1‖ < ε. Let f = f1 ∗ f2, which is still in P . Since h(x′2) = (f1 ∗ h)(x2) = h(x2) and
x′2 ∗ f2 = x2 ∗ f , we have ‖x2 ∗ f − h(x2)1‖ < ε. On the other hand, since (f2 ⊗ id) ad is ucp, hence
contractive, we have

‖x1 ∗ f − h(x1)1‖ = ‖(x1 ∗ f1 − h(x1)1) ∗ f2‖ ≤ ‖x1 ∗ f1 − h(x1)1‖ < ε.

As a result ‖(x1 + ix2) ∗ f − h(x1 + ix2)1‖ < 2ε. The converse is obvious. �

We now verify that our main example FUF has the PAPh. Banica proved in [Ban97] that FUF
is C∗-simple with a unique σ-KMS state, using an adaptation of Powers’ averaging techniques on
Corep(FUF ). It should be noted that Banica also defined an analogue of Powers’ averaging property
for DQGs which turns out to not be equivalent to ours. In fact, Banica remarked in [Ban97, Section
8] that U+

F does not have the PAP in his sense. However, as we are about to see, what Banica actually
proves is that it does have the PAP in our sense.

At heart of the proof of [Ban97, Theorem 3] is indeed the use of maps AD(u) : C[G] → C[G] from
[Ban97, Lemma 9], for u ∈ Corep(G), which are given by the formula

AD(u)(z) = (Tr⊗id)[(Qbu ⊗ 1)u(1⊗ z)u∗(Q−du ⊗ 1)]

where b, d are real parameters. In other words and with our notation, AD(u)(z) = (qTrb−du ⊗id) adop(z) =
z ∗op qTrb−du , where qTrb−du (a) := Tru(Qb−du au) for a = (au)u ∈ c0(FUF ). Note in particular that
qTr1

u = qTru and qTr−1
u = qTr′u.

Proposition 3.8 ([Ban97]). The discrete quantum groups FUF have the PAPh.

Proof. We claim that in the proof of [Ban97, Theorem 3] what Banica really showed is that FUop
F has

the PAPh (in our sense) and hence G = FUF has the PAPh. Fix z = z∗ ∈ C[G] ∩ ker(h) and ε > 0.
In the proof of [Ban97, Theorem 3], a unital linear map F = V ◦W , with V , W : C∗r (G)→ C∗r (G), is
constructed. Let us first describe the maps V and W .

The unital map W is constructed at [Ban97, Corollary 4] and given by W = M−1 AD(r), for a
specific corepresentation r ∈ I, the parameters d = −b = 1

2 and M > 0. The map V is obtained
from [Ban97, Corollary 3]. Here, V is of the form V = Tm, for some integer m ≥ 0 and a unital map
T : C∗r (G) → C∗r (G) obtained from [Ban97, Proposition 8]. Similarly to W , T is constructed from
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[Ban97, Lemma 9] and given by the formula T = M−1
1 AD(r1) +M−1

2 AD(r2) +M−1
3 AD(r3) for some

well-chosen corepresentations r1, r2, r3 ∈ I, the parameters d = −b = 1/2 and with M1, M2, M3 > 0.
With our notation we have T (z) = z ∗op ϕ1 with ϕ1 = M−1

1 qTr′r1 +M−1
2 qTr′r2 +M−1

3 qTr′r3 and

W (z) = z ∗op ϕ2 with ϕ2 = M−1 qTr′r. As noted in the Preliminaries, the maps qtr′w belong to
Probch(Gop). Altogether, the unital map F : C∗r (G) → C∗r (G) is of the form F (z) = z ∗op ϕ for some
ϕ ∈ Probch(Gop). Moreover, r, r1, r2, r3 and m are chosen so that, for our fixed z ∈ C[G], one has
‖F (z)‖ ≤ ε‖z‖. The result thus follows from Lemma 3.6. �

Such as in the classical case, the PAP easily implies C∗-simplicity and, in the unimodular case, the
unique trace property. Note that by [KKSV22, AS24] a state on C∗r (G) is G-invariant iff it is KMS
with respect to the scaling automorphism group τ iff it is tracial.

Proposition 3.9. Let G be a DQG. If G has the PAP then G is C∗-simple and

(1) if G is unimodular then h is the only G-invariant state on C∗r (G);
(2) if G is non-unimodular then C∗r (G) has no G-invariant states.

If moreover G has the PAPh, then h is the unique σ-KMS state.

Proof. Assume G has the PAP and let I ⊆ C∗r (G) be a closed two-sided ideal. As already noted in the
proof of Proposition 2.1, ad stabilizes I, in particular x ∗ f ∈ I for all x ∈ I, f ∈ Prob(G). If I 6= 0
we can find x ∈ I+ such that h(x) = 1, since h is faithful on C∗r (G). By the PAP there exists a net of
states fα in Prob(G) such that x ∗ fα → 1, hence 1 ∈ I and I = C∗r (G).

Let τ ∈ S(C∗r (G)) be a G-invariant state, i.e. we have f ∗τ = τ for all f in Prob(G) or, equivalently,
in Probc(G). Take x = x∗ ∈ C∗r (G) and a corresponding net of states fα given by PAP. Then we
have τ(x) = (fα ∗ τ)(x) = τ(x ∗ fα) → h(x)τ(1) = h(x). Since the self-adjoint elements span C∗r (G),
this shows that τ = h. If we assume PAPh, by Lemma 3.2 this computation works also for all σ-KMS
states τ .

If G is unimodular, tracial states on C∗r (G) are G-invariant, hence h is the only trace. If G is not
unimodular, h is not G-invariant (i.e. Probch(G) 6= Probc(G)) hence the previous computation shows
that C∗r (G) has no G-invariant states, and if G has the PAPh, it shows that h is the only σ-KMS
state. �

Remark 3.10. The Dixmier property of a C∗-algebra A holds whenever for every a ∈ A, conv{uau∗ :
u ∈ U(A)} ∩ Z(A) 6= {0}. In the case of a classical group C∗-algebra A = C∗r (G), the PAP clearly
implies the Dixmier property, using unitaries u = λ(s), s ∈ G. This is not so clear anymore in the
quantum case. However, it was established in [HZ84] that if A is simple, then A has the Dixmier
property if and only if A has at most one tracial state. Hence Proposition 3.9 together with [AS24]
shows that if G has the PAP then C∗r (G) has the Dixmier property.

3.2. The PAP and the state space of C∗r (G). Using Hahn-Banach one can rephrase the PAPh in
terms of functionals on C∗r (G). This generalizes [Ken20, Proposition 6.1] and part of [Haa17, Theorem
4.5].

Definition 3.11. For µ ∈ C∗r (G)∗ we denote K(µ), resp. Kh(µ), the space P ∗ µw∗, where P =
Probc(G), resp. Probch(G).

Lemma 3.12. Let G be a DQG. The following are equivalent:

(1) G has the PAPh;
(2) for every µ ∈ S(C∗r (G)), h ∈ Kh(µ);
(3) for every µ ∈ C∗r (G)∗, µ(1)h ∈ Kh(µ).

The equivalence between 1. and 2. also holds for the PAP using K(µ) instead of Kh(µ).

Proof. Write P = Probc(G) resp. P = Probch(G).

(1 =⇒ 2). Take µ ∈ S(C∗r (G)). Using the Hahn-Banach separation theorem, if h /∈ P ∗ µw∗ then
there exists x ∈ C∗r (G) such that

inf
f∈P
<((f ∗ µ)(x)− h(x)) > 0.

Since µ = µ̄, h̄ = h and P̄ = P , the same holds for x∗, hence we can assume that x∗ = x and the PAP
resp. the PAPh fails because <((f ∗ µ)(x)− h(x)) ≤ ‖x ∗ f − h(x)1‖.
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(2 =⇒ 1). For a contradiction, assume that the PAP, resp. the PAPh fails. Let x ∈ C∗r (G), x = x∗,
be such that inff∈P ‖x ∗ f − h(x)1‖ > 0. By the Hahn-Banach separation theorem, there exists ε > 0
and µ ∈ C∗r (G)∗ such that <((f ∗ µ)(x)) ≥ <(µ(1)h(x)) + ε for all f ∈ P . Again we can assume that
µ = µ̄, hence µ ∈ S(C∗r (G)) after renormalizing, and this contradicts 2.

(3 =⇒ 2) is obvious.
(2 =⇒ 3). Let µ : C∗r (G)→ C be a bounded functional. Decompose µ = µ1−µ2 + i(µ3−µ4) with

µi ∈ C∗r (G)∗+. By assumption, there exists a net (fα) ⊆ P such that fα ∗ µ1 →w∗ µ1(1)h. Using w∗-
compactness of P ∗ µi

w∗
for each i, we find νi ∈ C∗r (G)∗+ such that after passing to a convergent subnet

we have limw∗
α fα ∗ µi = νi (in particular νi(1) = µi(1)). This shows that µ1(1)h − ν2 + i(ν3 − ν4) ∈

P ∗ µw∗. Using P -invariance of h, and by repeating the same argument, we deduce that P ∗ µw∗

contains µ1(1)h− ν2(1)h+ i(ν3(1)h− ν4(1)h) = µ(1)h. �

The preceeding Lemma motivates the following definition and leads to Theorem 3.17.

Definition 3.13. We say that X ⊆ S(C∗r (G)) is a G, resp. Gh-boundary envelope if X 6= ∅ and
X = K(µ), resp. Kh(µ), for every µ ∈ X. We say that such a boundary envelope X is non-trivial if
X 6= {h}.

Remark 3.14. Since Probc(G) and Probch(G) are convex, boundary envelopes are automatically
convex and w∗-closed. In the classical case G-boundary envelopes correspond to G-boundaries inside
the space S(C∗r (G)), as shown in the next proposition. In the quantum case, it does not make sense to
consider G-boundaries inside S(C∗r (G)), since G-boundaries are in general noncommutative. However
boundary envelopes, as introduced in the previous definition, will prove useful also in the quantum
case.

Proposition 3.15. Let G = G be a discrete group. The following are equivalent for X ⊆ S(C∗r (G)):

(1) X is a G-boundary envelope;
(2) X = convw∗(Y ) where Y ⊆ S(C∗r (G)) is a G-boundary;
(3) X = Ψ∗(S(C(∂FG))) for some G-equivariant ucp map Ψ : C∗r (G)→ C(∂FG).

Proof. The proof comes from a careful inspection of the proof of [Ken20, Proposition 3.1].
(1 =⇒ 2). It follows from the definitions that X is a minimal affine G-space. Let ext(X) be the

set of extreme points of X. By [Gla76, Theorem III2.3], ext(X)
w∗

is a G-boundary.
(2 =⇒ 3). This is exactly the converse of [Ken20, Proposition 3.1].

(3 =⇒ 1). Because C(∂FG) is a G-boundary, for every µ ∈ S(C(∂FG)), Prob(G) ∗ µw∗ =
S(C(∂FG)). It is immediate from here that X is a G-boundary envelope. �

Lemma 3.16. For any µ ∈ S(C∗r (G)), there exists a G-boundary envelope X ⊆ K(µ), and a Gh-
boundary envelope X ⊆ Kh(µ).

Proof. Let (Xj)j∈J be a descending net of non-empty w∗-closed Prob(G)-invariant subspaces of K(µ).
By w∗-compactness of K(µ), the finite intersection property implies that

⋂
j∈J Xj is a non-empty

w∗-closed Prob(G)-invariant subspace of K(µ). By Zorn’s lemma, minimal such subspaces exist, and
they are clearly G-boundary envelopes. The argument is the same for Kh(µ). �

We can then prove a quantum version of [Ken20, Theorem 3.6], where G-boundaries are replaced
with Gh-boundary envelopes.

Theorem 3.17. A discrete quantum group G has the PAPh if and only if the only Gh-boundary
envelope in S(C∗r (G)) is trivial.

Proof. Assume that G has the PAPh and let X be a Gh-boundary envelope. Take µ ∈ X, then by
Lemma 3.12 we have h ∈ Kh(µ) = X. But then we have as well X = Kh(h) = {h}. Conversely,
fix µ ∈ S(C∗r (G)). Using Lemma 3.16 we can find a Gh-boundary envelope X ⊆ Kh(µ), and by
assumption we must have X = {h}. In particular h ∈ Kh(µ) and the PAPh follows from Lemma
3.12. �

3.3. The PAP and ucp maps on C∗r (G). As in the classical case we establish the following corre-
spondance between G-boundary envelopes and G-equivariant ucp maps C∗r (G)→ C(∂FG). Note that
by Lemma 3.16 every G-boundary envelope contains a Gh-boundary envelope, so that Gh-boundary
envelopes are also connected to G-equivariant ucp maps C∗r (G)→ C(∂FG).
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Definition 3.18. For a G-equivariant ucp map Ψ : C∗r (G) → B we denote XΨ = Ψ∗(S(B)) ⊆
S(C∗r (G)).

Lemma 3.19. Let G be a DQG. The map Ψ 7→ XΨ is a bijection between G-equivariant ucp maps
C∗r (G)→ C(∂FG) and G-boundary envelopes in S(C∗r (G)).

Proof. Let B be a G-boundary, and Ψ : C∗r (G) → B a G-equivariant ucp map. Then for every
µ ∈ S(B) we have K(µ) = S(B), see [KKSV22, Lemma 4.2], and since Ψ is equivariant this entails
K(ν) = XΨ for all ν ∈ XΨ, i.e. XΨ is a G-boundary envelope. Note that Ψ∗ is (w∗, w∗)-continuous
and XΨ is w∗-closed, as it is the continuous image of the w∗-compact space S(B).

Conversely, let X ⊂ S(C∗r (G)) be a G-boundary envelope and take µ ∈ X. Recall that we denote
Pµ = (id⊗µ) ad : C∗r (G)→ `∞(G), so that f ◦Pµ = f ∗µ for all f ∈ Prob(G). Choose a G-equivariant

ucp projection P : `∞(G)→ C(∂FG) and set Ψ = P ◦Pµ : C∗r (G)→ C(∂FG). Since ϕ◦P ∈ Prob(G)
w∗

for any ϕ ∈ S(C(∂FG)) we have

XΨ = {ϕ ◦Ψ : ϕ ∈ S(C(∂FG))} ⊆ {f ◦ Pµ : f ∈ Prob(G)}w∗ = K(µ) = X.

Moreover, taking ν ∈ XΨ, we have X = K(ν) because X is a G-boundary envelope, hence X ⊂ XΨ

because XΨ is Prob(G)-invariant.
On the other hand, if we started from X = XΦ in this construction, we have µ = ϕ ◦ Φ with

ϕ ∈ S(C(∂FG)), hence Ψ = P ◦ Pϕ ◦ Φ by equivariance of Φ. But by rigidity of ∂FG, the equivariant
ucp map P ◦ Pϕ : C(∂FG)→ C(∂FG) must be the identity, hence Ψ = Φ. �

Remark 3.20. There is a clear analogue of a G-boundary envelope in the state space of an arbitrary
G-C∗-algebra. In Lemma 3.19 and its proof, we can replace C∗r (G) with any G-C∗-algebra — to
be precise, there is a bijection between G-boundary envelopes in S(A) and G-equivariant ucp maps
A→ C(∂FG) for any G-C∗-algebra A.

Definition 3.21. Given a C∗-algebra A, we say that a ucp map Ψ : C∗r (G) → A factors h if h ∈
Ψ∗(S(A)).

Lemma 3.22. Let G be a DQG and A a C∗-algebra. A ucp map Ψ : C∗r (G)→ A factors h iff for all

x ∈ C[G] we have h(x) ∈ {µ(Ψ(x)) : µ ∈ S(A)}.
Proof. Since S(A) is w∗-compact and convex, Ψ∗(S(A)) is a w∗-closed convex subset of S(C∗r (G)). If
h /∈ Ψ∗(S(A)), the Hahn-Banach separation theorem shows that there exists x ∈ C∗r (G) and ε > 0
such that <(µ(Ψ(x))) ≥ <(h(x))+3ε for all µ ∈ S(A). Taking y ∈ C[G] such that ‖x−y‖ ≤ ε we have
|µ(Ψ(y))−h(y)| ≥ ε for all µ ∈ S(A). The reverse direction is obvious. Note that {µ(Ψ(x)) : µ ∈ S(A)}
is in fact closed. �

Lemma 3.23. Let A be a G-boundary and Ψ : C∗r (G)→ A a G-equivariant ucp map.

(1) Assume G has the PAP. Then Ψ factors h.
(2) Assume G is unimodular. Then Ψ factors h iff Ψ = 1h.

Proof. First we note that by (the beginning of the proof of) Lemma 3.19 the set XΨ = Ψ∗(S(A)) is a
G-boundary envelope.

1. By Lemma 3.12, h ∈ K(µ) = XΨ, where we have chosen some µ ∈ XΨ.
2. If Ψ factors h, XΨ contains h, hence XΨ = K(h). Since G is unimodular, K(h) = {h}. As a

result we have µ ◦Ψ = h = µ ◦ (1h) for all µ ∈ S(A), hence Ψ = 1h. The converse is trivial. �

Corollary 3.24. A DQG G has the PAP iff every G-equivariant ucp map C∗r (G)→ C(∂FG) factors
h. In particular, if G is unimodular then G has the PAP iff 1h is the unique G-equivariant ucp map
C∗r (G)→ C(∂FG).

Proof. The direct implication is a particular case of Lemma 3.23. For the converse, take µ ∈ S(C∗r (G)).
By Lemma 3.16 there exists a G-boundary X ⊂ K(µ), which can be written X = XΨ for some G-
equivariant ucp map Ψ : C∗r (G) → C(∂FG) by Lemma 3.19. By hypothesis Ψ factors h, hence we
have h ∈ X ⊂ K(µ), and Lemma 3.12 shows that G has the PAP. The unimodular case follows
immediately from Lemma 3.23 and the general case. �

We end this section by stating explicitly the new results that we obtain for the unitary free quantum
groups.

Corollary 3.25. The only (FUF )h-boundary envelope in S(C∗r (FUF )) is trivial. Every FUF -equivariant
ucp map C∗r (FUF )→ C(∂FFUF ) factors h, and if F is unitary 1h is the unique such map.
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4. Freeness and Faithfulness of boundary actions

4.1. Freeness. The following definition was formulated by Masuda and Tomatsu [MT07, Definition
2.7] in the case when A is a von Neumann algebra equipped with a cocycle action of G. Recall that
W ∗-coactions on a von Neumann algebra A are also C∗-coactions on A, see the discussion in [KKSV22,
Section 2.5]. The same notion was also considered in [Zar19] in the case when G = G is a classical
discrete group. See also [Kal69, CKN72] in the case of a single automorphism. One should be aware
that in the case of classical actions of groups on locally compact spaces one recovers the notion of
topological freeness ; we shall nevertheless keep the terminology of [MT07] and [Zar19].

In this section we denote p0 ∈ cc(G) the support projection of the counit, which coincides with the
minimal central projection pu ∈ cc(G) corresponding to the trivial corepresentation 1 ∈ I. Recall that
for a coaction α : A→M(c0(G)⊗A), a ∈ A and u ∈ I we denote αu(a) = (pu⊗ 1)α(a) ∈ B(Hu)⊗A.

Definition 4.1. We say that G y A is free if for any X ∈ M(c0(G) ⊗ A), X(1 ⊗ a) = α(a)X for
all a ∈ A implies X ∈ p0 ⊗ Z(A). Equivalently, for every 1 6= u ∈ I and every X ∈ B(Hu) ⊗ A,
∀a ∈ A X(1⊗ a) = αu(a)X =⇒ X = 0.

Proposition 4.2. Let G = G be a discrete group acting on a G-C∗-algebra A. We have that Gy A
is free (in our sense) if and only if G acts freely on A (in the sense of [Zar19]), i.e. αg(a)b = ba for
all a ∈ A and some g ∈ G \ {e} implies b = 0. In particular, if A = C(X) is commutative then
Gy C(X) is free if and only if Gy X is topologically free.

Proof. Since B(Hg) ' C for every g ∈ I = G, the equation X(1 ⊗ a) = α(a)X, for X ∈ B(Hg) ⊗ A,
is equivalent to Xa = αg(a)X for every g ∈ G. This establishes the claim that G y A is free if and
only if G acts freely on A.

Now, assume G y C(X) is free. Take g ∈ G and an open subset U ⊆ Fix(g). Take any b ∈ C(X)
whose support is contained in U . Then for any a ∈ C(X) we have αg(a)b = ab, hence b = 0. This
shows that Fix(g) has empty interior as desired. Conversely, suppose that G y C(X) is not free.
Then there exists b ∈ C(X), b 6= 0 and g ∈ G, g 6= e such that bαg(a) = ab for every a ∈ C(X). Let
U be an non empty open subset contained in the support of b. Then U ⊆ Fix(g). �

Compare the following with [MT07, Lemma 2.8], [MT07, Theorem 2.14], and [KS19, Section 7.4].
Our theorem is a quantum analogue of [Zar19, Theorem 3.2] and the statement 2. ⇐⇒ 3. of our
theorem is a C∗-algebraic analogue of [MT07, Theorem 2.14].

Recall that Aor G is the closed subspace of M(K(`2(G))⊗ A) generated by elements (x⊗ 1)α(a)
where x ∈ C∗r (G) and a ∈ A. We can and will identify C∗r (G) and A with subalgebras of M(Aor G)
— moreover in our setting AorG will be unital. We denote E0 = ωξ0⊗ id : AorG→ A the canonical
conditional expectation, where ξ0 ∈ `2(G) is the canonical C∗r (G)-cyclic vector.

Theorem 4.3. Let G be a DQG and A be a G-C∗-algebra. The following are equivalent:

(1) there exists a unique conditional expectation Aor G→ A;
(2) α(A)′ ∩ (Aor G) = Z(α(A));
(3) G yα A is free.

Proof. 1 ⇒ 2. This follows from [Zar19, Proposition 3.1] while using the fact that the canonical
conditional expectation E0 : Aor G→ A is faithful.

2 ⇒ 3. Take 1 6= u ∈ I and X ∈ B(Hu) ⊗ A such that X(1 ⊗ a) = αu(a)X for all a ∈ A. Denote
Xα = (id⊗ α)X ∈ B(Hu)⊗M(c0(G)⊗A). Then

Xα(1⊗ α(a)) = ((id⊗ α)αu(a))Xα = (pu ⊗ 1⊗ 1)W ∗12α(a)23W12X
α

= (u∗ ⊗ 1)(1⊗ α(a))(u⊗ 1)Xα,

where we identify puc0(G) with B(Hu). By assumption we obtain

(u⊗ 1)Xα ∈ (1⊗ α(A))′ ∩ (B(Hu)⊗ (Aor G)) = B(Hu)⊗ Z(α(A)),

hence Xα ∈ (u⊗1)(B(Hu)⊗α(A)). Applying the canonical conditional expectation E0 on the second
leg of B(Hu)⊗ (Aor G) we obtain X = 0, since for u 6= 1 we have (id⊗ E0)(u) = 0.

3 ⇒ 1. Let E : A o G → A be a conditional expectation; we have in particular E((x ⊗ 1)α(a)) =
E(x)a and E(α(a)(x⊗1)) = aE(x) for x ∈ C∗r (G), a ∈ A. Denote X = (id⊗E)(W ∗12) ∈M(c0(G)⊗A),
where W ∗12 ∈ M(c0(G) ⊗ A or G). For a ∈ A we have W ∗12(1 ⊗ α(a)) = (∆ ⊗ id)α(a)W ∗12 = (id ⊗
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α)α(a)W ∗12. Applying id⊗E yields X(1⊗ a) = α(a)X. By assumption this implies X = p0 ⊗ a0 with
a0 ∈ Z(A) ; in particular we have (id⊗ E)(w) = 0 for any 1 6= w ∈ I, thus E = E0. �

In the special case of A = C(∂FG), freeness implies the PAP, and in particular, C∗-simplicity.
However, it also implies unimodularity and so freeness is probably not the appropriate notion to
consider for boundary actions of non-unimodular discrete quantum groups. Moreover it is not clear
that freeness passes from G-boundaries to the Furstenberg boundary as does topological freeness in
the classical case.

Corollary 4.4. Let G y A be a free action.

(1) If A is G-injective then G is unimodular.
(2) If A = C(∂FG) is the Furstenberg boundary then G has the PAP.

Proof. 1. Assume G is not unimodular. In particular h is not G-equivariant on C∗r (G), see Section 3.1,
hence the canonical expectation E0 : A or G → A is not G-equivariant either. On the other hand,
since A is G-injective, the identity map A→ A extends to a G-equivariant ucp projection AorG→ A.
Then Theorem 4.3 implies that G y A cannot be free.

2. Let Ψ : C∗r (G) → C(∂FG) be a G-equivariant ucp map. Using the G-equivariant inclusion

C∗r (G) ⊆ C(∂FG) or G and G-injectivity, we obtain a G-equivariant ucp extension Ψ̃ : C(∂FG) or

G → C(∂FG). By G-rigidity Ψ̃ restricts to the identity map on C(∂FG), hence it is a conditional

expectation. Theorem 4.3 implies Ψ̃ = E0, hence Ψ = 1h and Theorem 3.24 gives us the PAP, since
G is unimodular by the first point. �

If G = G is a discrete group, it is a well-known and easy fact that the action Gy∆ `∞(G) is free.
We have the following converse:

Corollary 4.5. The action G y `∞(G) is free if and only if `∞(G) is commutative.

Proof. We apply the von Neumann version of Theorem 4.3, namely [MT07, Theorem 2.14], which says
that G y `∞(G) is free if and only if `∞(G)′ ∩ (`∞(G) o G)′′ = Z(`∞(G)). Since (`∞(G) o G)′′ =
B(`2(G) this is equivalent to commutativity of `∞(G)′, hence of `∞(G) which is standardly represented
on `2(G). �

4.2. Faithfulness. In this subsection we will prove an analogue of Theorem 4.3 for faithfulness of
actions. The notion of faithfulness was introduced in [KKSV22] in connection with boundary actions.
We give below four new characterizations of faithfulness, which allow in particular to see that freeness
implies faithfulness, by comparing e.g. point 3. of Proposition 4.7 and the definition of freeness, or
Theorem 4.8 and Theorem 4.3.

Definition 4.6 ([KKSV22]). The action G yα A is faithful if Nα := {Pµ(a) : µ ∈ A∗, a ∈ A}′′ =
`∞(G).

Recall that the cockernel Nα of α is a Baaj-Vaes subalgebra of `∞(G) [KKSV22, Proposition 2.9], in
particular it can be realized as the group von Neumann algebra `∞(H) of a closed quantum subgroup

Ĥ ⊂ Ĝ of the dual of G [BV05, Proposition 10.5], and there is a group-like projection Pα ∈ `∞(G)
such that Nα = {f ∈ `∞(G) | (1⊗ Pα)∆(f) = f ⊗ Pα} [FK18, Theorem 3.1].

Proposition 4.7. Let G be a DQG and A be a G-C∗-algebra. TFAE:

(1) G yα A is faithful;
(2) if ϕ ∈ `1(G) satisfies ϕ ∗ µ = µ for every µ ∈ A∗, then ϕ = ε;
(3) if f ∈ `∞(G) satisfies (f ⊗ 1)α(a) = f ⊗ a for every a ∈ A, then f ∈ Cp0;

Proof. 1⇒ 2. Assume there exists ε 6= ϕ ∈ `1(G) such that ϕ∗µ = µ for every µ ∈ A∗. Then, ψ = ϕ−ε
is a non-zero element of `1(G) such that ψ ∗ µ = 0 for all µ ∈ A∗. In particular, ψ(Pµ(a)) = 0 for all
µ ∈ A∗ and a ∈ A. This shows that ψ|Nα = 0 and hence Nα 6= `∞(G).

2 ⇒ 3. Assume that there exists f ∈ `∞(G), f /∈ Cp0, such that (f ⊗ 1)α(a) = f ⊗ a for every
a ∈ A. We can choose ϕ ∈ `1(G) such that ϕ(f(1 − p0)) 6= 0 and ϕ(f) = 1. Then, for µ ∈ A∗ and
a ∈ A, an application of ϕ ⊗ µ to the above equation implies (ϕf) ∗ µ(a) = µ(a). In other words,
(ϕf) ∗ µ = µ for every µ ∈ A∗, but we have ϕf 6= ε.

3 ⇒ 1. Let Pα ∈ Nα be the group-like projection corresponding to Nα. For any f ∈ Nα we have
(1⊗ Pα)∆(f) = f ⊗ Pα, hence Pαf = ε(f)Pα. Applying this to f = Pµ(a), for a ∈ A, µ ∈ A∗, we get
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(Pα ⊗ µ)α(a) = µ(a)Pα. It follows that (Pα ⊗ 1)α(a) = Pα ⊗ a for all a ∈ A, which by assumption
implies Pα ∈ Cp0. Since p0 is the support of the co-unit, the condition (1⊗Pα)∆(f) = f⊗Pα becomes
void and we have Nα = `∞(G). �

Note that every G-invariant state τ : C∗r (G) → C extends by G-injectivity to a G-equivariant con-
ditional expectation E : C(∂FG) or G→ C(∂FG) such that E(C∗r (G)) = C1. This fact was exploited
in [KKSV22] to show that faithfulness of G y C(∂FG) implies that h is the only possible G-invariant
state on C∗r (G), see also [AS24]. In the same spirit, our next result establishes a characterization of
faithfulness of G y A in terms of the uniqueness of conditional expectations AorG→ A that restrict
to states on C∗r (G).

Theorem 4.8. Let G be a DQG and A be a G-C∗-algebra. TFAE:

(1) there exists a unique conditional expectation E : Aor G→ A such that E(C∗r (G)) = C1;
(2) α(A)′ ∩ (C∗r (G)⊗ 1) = C1;
(3) G yα A is faithful.

Proof. The proofs of (2 ⇒ 3) and (3 ⇒ 1) follow from essentially the same reasoning as in the proof
of Theorem 4.3. The proof of (1 ⇒ 2) follows from the same argument used in the proof of [Zar19,
Proposition 3.1] with only a minor adjustment.

1⇒ 2. The canonical expectation E0 : AorG→ A is the unique conditional expectation satisfying
E0(C∗r (G)) = h(C∗r (G)) = C. Let x ∈ α(A)′ ∩ (C∗r (G) ⊗ 1) be a self-adjoint element with ‖x‖ < 1,
so that 1 − x ∈ α(A)′ ∩ (C∗r (G) ⊗ 1) is positive and invertible. Then 1 − E0(x) ∈ C1 is positive and
invertible. Now, define a ucp map θ : Aor G→ A by setting

θ(z) = E0((1− x)1/2z(1− x)1/2)(1− E0(x))−1.

It is clear that θ(a) = a for a ∈ A and θ(C∗r (G)) = C, where the latter follows because (1 − x)1/2 ∈
C∗r (G). Therefore θ = E0 by assumption. So,

E0(x)(1− E0(x)) = E0((1− x)1/2x(1− x)1/2) = E0(x− x2)

which implies that E0(x2) = E0(x)2 and x is in the multiplicative domain of E0. We have thus shown
that E0 restricts to a ∗-character on α(A)′ ∩ (C∗r (G) ⊗ 1). Since E0 is faithful, this restriction is
injective, hence we must have α(A)′ ∩ (C∗r (G)⊗ 1) = C1.

2⇒ 3. Take 1 6= u ∈ I and x ∈ B(Hu) such that α(a)(x⊗ 1) = x⊗ a for all a ∈ A. An application
of id⊗ α shows that

(x⊗ 1⊗ 1)α(a)23 = (id⊗ α)α(a)(x⊗ 1⊗ 1) = W ∗12α(a)23W12(x⊗ 1⊗ 1)

= u∗12α(a)23u12(x⊗ 1⊗ 1).

Therefore, (u⊗1)(x⊗1⊗1) ∈ (1⊗α(A))′. Then for any ϕ ∈ B(Hu)∗ the element ((xϕ)⊗ id)(u)⊗1 ∈
α(A)′∩ (C∗r (G)⊗1) is scalar by assumption, and since u 6= 1 this is only possible if it vanishes, so that
necessarily x = 0. This shows that the third characterization of Proposition 4.7, is satisfied, since we
must have x := puf = 0 for all u 6= 1.

3 ⇒ 1. As in the proof of Theorem 4.3, if E : A or G → A is a conditional expectation and
X = (id⊗ E)(W ∗12) ∈ M(c0(G)⊗ A), the coaction equation implies X(1⊗ a) = α(a)X for all a ∈ A.
If moreover E(C∗r (G)) = C1 we have X = f ⊗ 1 with f ∈ `∞(G) and Proposition 4.7 implies f ∈ Cp0.
This shows that E = E0. �

Example 4.9. Clearly, the action of G on `∞(G) is always faithful.
For examples with G-boundaries, recall Theorem 6.9 from [ASK24] which proves that for G exact,

C∗-simplicity implies the faithfulness of the action on C(∂FG). This shows that the action on C(∂FG)
is faithful in the following cases: G = FUF , G = FOF with FF̄ = ±IN and ‖F‖8 ≤ 3

8 Tr(FF ∗), and
the dual G of Aut(B,ψ) where ψ is a δ-trace and dim(B) ≥ 8.

Note on the other hand that faithfulness of the action of FOF on its quantum Gromov boundary
C(∂GFOF ) is proved in [KKSV22] without restriction on F (subject to FF̄ = ±IN ). The faithfulness
of the action on C(∂FFOF ) follows because we have a G-equivariant uci map C(∂GFOF )→ C(∂FFOF ).
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4.3. Strong C∗-Faithfulness.

Definition 4.10. Let A be a G-C∗-algebra. We say G y A is C∗-faithful if for every η > 0 and
every minimal central projection p ∈ cc(G) with ε(p) = 0 there exists k ∈ N∗ and b ∈ (A ⊗Mk(C))+

such that ‖b‖ = 1 and ‖(p ⊗ b)(α ⊗ id)(b)‖ ≤ η. We say that G y A is strongly C∗-faithful if the
same holds for every η > 0 and for every finite rank central projection p ∈ cc(G).

Remark 4.11. One could consider a strengthened version of (strong) C∗-faithfulness by allowing
η = 0 — and this is indeed what we will achieve in the case of the Gromov boundary of FUF below.
But we think that it would be too strong in general ; and moreover we need the restriction to η > 0
to show that (strong) C∗-faithfulness passes to the universal Furstenberg boundary. We could also
strengthen the definition by imposing k = 1, but this time our verification for the Gromov boundary
of FUF would not work.

We prove below that the notions of (strong) C∗-faithfulness reduce to the classical notions for
actions of classical groups on classical spaces, and we make the connection with the classical notion
of topological freeness. Recall that an action Gy X is called strongly faithful if for any finite subset
F ⊂ G \ {e} there exists x ∈ X such that gx 6= x for all g ∈ F , see e.g. [dlH85, Lemma 4] and
[FLMMS22, Section 2.1].

Proposition 4.12. Assume G = G is a classical discrete group acting on a commutative C∗-algebra
A = C0(X). Then G y A is (resp. strongly) C∗-faithful iff G y X is (resp. strongly) faithful. If the
action Gy X is topologically free then it is strongly faithful, and the converse is true if X is compact
and the action of G is minimal.

Proof. Assume that G y A is strongly C∗-faithful and take F ⊂ G \ {e} finite. Considering the
characteristic function p ∈ cc(G) of F and η = 1

4 we obtain b ∈ (A⊗Mk(C))+ ' C0(X,Mk(C)+) such

that ‖b‖ = 1 and ‖b×gb‖ ≤ 1
4 for all g ∈ F . Pick a point x ∈ X such that ‖b(x)‖ > 1

2 . We claim that x

cannot be fixed by any g ∈ F : otherwise we would have ‖(b× gb)(x)‖ = ‖b(x)b(g−1x)‖ = ‖b(x)‖2 > 1
4 .

For the reverse implication, take also F ⊂ G \ {e} finite and x ∈ X such that x 6= gx for all g ∈ F .
For each g ∈ F choose open subsets Ug, Vg ⊂ X such that x ∈ Ug, g

−1x ⊂ Vg and Ug ∩ Vg = ∅.
Consider U =

⋂
g∈F Ug ∩ gVg, which is still an open subset containing x. By construction we have

U ∩ g−1U = ∅ for all g ∈ F . Now it suffices to take a ∈ C0(X)+ that vanishes on X \U and such that
‖a‖ = 1: then for any y ∈ X and g ∈ F at least one of a(y) and (ga)(y) vanishes, so that a× ga = 0.
This proves strong C∗-faithfulness with η = 0 and k = 1.

Assume now that G y X is topologically free and take F ⊂ G \ {e} finite. By assumption Fix(g)
has empty interior for any g ∈ G. Since F is finite, Y =

⋃
g∈F Fix(g) still has empty interior and we

can find x ∈ X \ Y , thus proving strong faithfulness.
Assume finally that X is compact and that G y X is minimal but not topologically free. Then

there exists g ∈ G, g 6= e such that Fix(g) contains a non-empty open subset U . By minimality,
(hU)h∈G is an open cover of X and by compacity we can find h1, . . . , hn ∈ G such that

⋃
i hiU = X.

We have then
⋃
i Fix(high

−1
i ) = X, and this shows that strong faithfulness fails for the finite subset

{high−1
i ; i = 1, . . . , n} ⊂ G \ {e} . �

Proposition 4.13. Let A be a G-C∗-algebra. If G yα A is C∗-faithful, then it is faithful.

Proof. It suffices to find, for every η > 0 and every minimal central projection p ∈ cc(G) such that
ε(p) = 0, an element f ∈ Nα such that ‖f‖ ≤ 1, p0f = p0 and ‖pf‖ ≤ η. Indeed this implies that
p0 ∈ Nα, which entails Nα = `∞(G), see [KKSV22]. Take the element b ∈ (A⊗Mk(C))+ given by C∗-
faithfulness (with respect to η and p). By Hahn-Banach, find a state ν ∈ (A⊗Mk(C))∗ which restrict
to evaluation at 1 on C∗(b) ' C(Sp(b)), and put f = (id ⊗ ν)[(1 ⊗ b)(α ⊗ id)(b)]. We have ‖b‖ = 1,
hence ‖(α⊗ id)(b)‖ = 1, and since ν is a state, ‖f‖ ≤ 1. Since p0 is the support of the co-unit we have
moreover p0f = ν(b2)p0 = 12p0 = p0, and by choice of b we have ‖pf‖ ≤ ‖(p ⊗ b)(α ⊗ id)(b)‖ ≤ η.
Finally, writing ν =

∑
µi ⊗ τi and b =

∑
aj ⊗mj with µi ∈ A∗, τi ∈ Mk(C)∗, aj ∈ A, mj ∈ Mk(C)

we have f =
∑
τi(mjmk)(id⊗ µibj)(α(bk)) ∈ Nα. �

Remark 4.14. Proposition 4.12 shows that for classical groups acting on classical spaces, the impli-
cation proved in the previous proposition is an equivalence. This is not the case in general, already
for classical groups acting on noncommutative C∗-algebras. Indeed, fix θ ∈ R and consider the au-
tomorphism α of M2(C) given by α(a) = u∗θauθ, where uθ = diag(1, eiθ). Then one can check that
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for any b ∈ M2(C) ⊗ B(`2N) positive such that ‖b‖ = 1, one has ‖b(α ⊗ id)(b)‖ ≥ 1 − |1 − eiθ|. As
a result, the faithful action of Z or Z/NZ generated by α is not C∗-faithful if 0 < |1 − eiθ| < 1. In
fact, rather than C∗-faithfulness, the interesting notion for us is strong C∗-faithfulness “in presence
of minimality” which we use as a replacement of freeness for quantum boundary actions.

As a first example let us remark that G y∆ `∞(G) is strongly C∗-faithful. Indeed, the support
of the counit p0 ∈ `∞(G) is a norm one positive element and (p ⊗ p0)∆(p0) = 0 for every central
projection p ∈ cc(G) such that ε(p) = 0.

We prove now strong C∗-faithfulness for our central example, the quantum Gromov boundary of
FUF . The proof relies on a nice combinatorial trick uncovered by Banica in his proof of Power’s
Property for FUF , see [Ban97, Lemme 13]. It will then follow from Corollary 5.6 and Corollary 4.21
that FUF is C∗-simple. As mentioned earlier, it was already established by Banica that FUF possesses
the PAP and hence is C∗-simple.

Recall the notation C(∂GFUF ) = B∞ = B/c0(FUF ) from Section 2.2, the associated coaction
β : B∞ → M(c0(FUF ) ⊗ B∞) and the central elements πx ∈ B∞, for x ∈ I, given by the formula
πx =

∑
y∈I pxy in B.

Proposition 4.15. The action of FUF on C(∂GFUF ) is strongly C∗-faithful.

Proof. Let p ∈ cc(FUF ) be a finite-rank central projection such that ε(p) = 0. We have p =
∑

x∈F px
for a finite subset F ⊂ I not containing 1. According to [Ban97, Lemme 13] we can find N ∈ N such
that all irreducible subobjects of U⊗x⊗U , with x ∈ F and U = (uū)N , are indexed by words starting
with u and ending with ū. Consider b = (pU ⊗ 1)β(πū) ∈ B(HU ) ⊗ B ⊂ B(HU ) ⊗ `∞(G). We will
show below that (1 ⊗ p ⊗ 1)(id ⊗ β)(b) and (1 ⊗ p ⊗ 1)b13 have “disjoint support” at the right leg in
`∞(G), meaning that for any s ∈ I we have (1 ⊗ p ⊗ ps)(id ⊗ β)(b) = 0 or (1 ⊗ p ⊗ ps)b13 = 0. In
particular (1⊗ p⊗ 1)b13(id⊗ β)(b) = 0. This identity still holds modulo 1⊗ 1⊗ c0(G) and this shows
that the image of σ(b) in B∞ ⊗B(HU ) satisfies Definition 4.10, with k = dimU and even for η = 0.

To prove the above claim, take s ∈ I such that (1 ⊗ ps)b 6= 0. Equivalently, U ⊗ s contains a
corepresentation y starting with ū. By Frobenius reciprocity, this is equivalent to s ⊂ U⊗y (note that
Ū = U). Assume now that we have as well (1⊗p⊗ps)(id⊗β)(b) 6= 0. Equivalently, there exists x ∈ F
such that U ⊗ x⊗ s contains a corepresentation z starting with ū. We have then z ⊂ U ⊗ x⊗ U ⊗ y.
By irreducibility, there exists a subobject t ⊂ U ⊗ x ⊗ U such that z ⊂ t ⊗ y. But by construction t
starts with u and ends with ū, while y starts with ū. Hence t ⊗ y = ty and z = ty. In particular z
starts with u, a contradiction. �

We come back to the general case. The following reformulation of (strong) C∗-faithfulness is crucial
for the application to C∗-simplicity.

Proposition 4.16. The action G y A is C∗-faithful (resp. strongly C∗-faithful) iff for every η > 0
and every minimal (resp. finite rank) central projection p ∈ cc(G) with ε(p) = 0 there exists k ∈ N∗
and b ∈ (A⊗Mk(C))+ such that ‖b‖ = 1 and ‖p⊗ b+ (p⊗ 1)(α⊗ id)(b)‖ ≤ 1 + η.

The proposition follows immediately from the following two lemmas, which are probably known to
experts, by taking A = p⊗ b and B = (p⊗ 1)(α⊗ id)(b) ∈ c0(G)⊗A⊗Mk(C).

Lemma 4.17. Fix ε ∈
]
0, 1

2

]
. Then there exists n ∈ N such that, for any positive operators A,

B ∈ B(H) satisfying ‖A‖ ≤ 1, ‖B‖ ≤ 1 and ‖A+B‖ ≤ 1 + ε, we have ‖AnBn‖ ≤ 14ε.

Proof. The assumption can also be written 0 ≤ A,B ≤ 1, 0 ≤ A+B ≤ 1 + ε.
Step 1 (well-known). If ζ ∈ H satisfies ‖ζ‖ = 1 and ‖Aζ‖2 ≥ 1 − ε2, then ‖Aζ − ζ‖ ≤ ε. Indeed,

writing ζ = ζ −Aζ +Aζ and noting that A−A2 ≥ 0 we can write

ε2 ≥ ‖ζ‖2 − ‖Aζ‖2 = ‖ζ −Aζ‖2 + 2<(ζ −Aζ | Aζ) ≥ ‖ζ −Aζ‖2.
This implies also (ζ | Aζ) ≥ 1− ε.

Step 2. Fix ζ as above and ξ ∈ H such that ‖ξ‖ = 1, ‖Bξ‖2 ≥ 1 − ε2. We have the following
inequalities: (ζ | Aζ) ≥ 1− ε, (ξ | Bξ) ≥ 1− ε, (ζ | Bζ) ≥ 0, (ξ | Aξ) ≥ 0. Also,

(ζ | Aξ) + (ξ | Aζ) = 2<(ξ | Aζ) ≥ 2<(ξ | ζ)− 2‖ξ‖‖ζ −Aζ‖ ≥ 2<(ζ | ξ)− 2ε.

Similarly (ξ | Bζ) + (ζ | Bξ) ≥ 2<(ζ | ξ)− 2ε. Summing all these inequalities we get

(ζ + ξ | (A+B)(ζ + ξ)) ≥ 2 + 4<(ζ | ξ)− 6ε.
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But on the other hand we have (ζ + ξ | (A+B)(ζ + ξ)) ≤ ‖ζ + ξ‖2‖A+B‖ ≤ (2 + 2<(ζ | ξ))(1 + ε).
Substracting we obtain <(ζ | ξ) ≤ 4ε/(1 − ε) ≤ 8ε, if ε ≤ 1

2 . We can apply this to −ξ and we
thus get |<(ζ | ξ)| ≤ 8ε. We can also apply this to iξ and we get |=(ζ | ξ)| ≤ 8ε, so that finally
|(ζ | ξ)| ≤ 8

√
2ε ≤ 12ε.

This can be reformulated as follows: denote P , Q the spectral projections of A, B for the interval
[
√

1− ε2, 1]. Then for any ζ, ξ ∈ H such that Pζ 6= 0, Qξ 6= 0 we can apply the previous result to
ζ ′ = Pζ/‖Pζ‖, ξ′ = Qξ/‖Qξ‖ and we get

|(Pζ | Qξ)| ≤ 12ε‖Pζ‖‖Qξ‖ ≤ 12ε‖ζ‖‖ξ‖.
This holds as well if Pζ = 0 or Qξ = 0, so that we have proved ‖PQ‖ ≤ 12ε.

Step 3. Take n ∈ N such that (1 − ε2)n ≤ ε2. For any unit vectors ζ, ξ ∈ H we have then

‖An(1− P )ζ‖ ≤ (1− ε2)n/2‖(1− P )ζ‖ ≤ ε and similarly ‖Bn(1− P )ξ‖ ≤ ε. We can then write

|(Anζ | Bnξ)| ≤ |(An(1− P )ζ | Bnξ)|+ |(AnPζ | Bn(1−Q)ξ)|+ |(AnPζ | BnQξ)|
≤ ε+ ε+ |(Anζ | PQBnξ)| ≤ 14ε.

This proves that ‖AnBn‖ ≤ 14ε. �

The second lemma is much easier and certainly well known as well.

Lemma 4.18. Fix ε ∈ [0,+∞[. Then for any positive operators A, B ∈ B(H) such that ‖A‖ =
‖B‖ = 1 and ‖AB‖ ≤ ε, we have ‖A+B‖ ≤ 1 + 2ε.

Proof. Since A + B ≥ A the assumption entails ‖A + B‖ ≥ 1. Also, 0 ≤ A, B ≤ 1 implies 0 ≤
A2 +B2 ≤ A+B. We can thus write

‖A+B‖2 = ‖(A+B)2‖ = ‖A2 +B2 +AB +BA‖
≤ ‖A2 +B2‖+ 2ε ≤ ‖A+B‖+ 2ε‖A+B‖

and the result follows. �

The following is a direct but important consequence of the previous reformulation of strong C∗-
faithfulness.

Corollary 4.19. If Φ : A → B is G-equivariant, unital and completely isometric, then (strong) C∗-
faithfulness passes from A to B. In particular, if a G-boundary A is (strongly) C∗-faithful, then so is
the universal Furstenberg boundary C(∂FG).

Theorem 4.20. Let A be a C∗-algebra with strongly C∗-faithful action of G, and let E : Aor G→ A
be a conditional expectation. Then the restriction of E to C∗r (G) factors h.

Proof. Let A be faithfully represented on a Hilbert space H. Recall that we identify A and C∗r (G) as
C∗-subalgebras of AorG, in such a way that (1⊗a)W = Wα(a) ∈M(c0(G)⊗AorG) for any a ∈ A.
Denote Ψ : C∗r (G)→ B(H) the restriction of E, and X = (id⊗Ψ)(W ) ∈M(c0(G)⊗A). Applying E
to the previous relation we obtain (1⊗ a)X = Xα(a).

Take η > 0 and p ∈ cc(G) a finite-rank central projection such that ε(p) = 0. Let k ∈ N, b ∈
A⊗Mk(C) be the elements given by Definition 4.10 for η and p. Since ‖b‖ = 1 we can find ζ ∈ H⊗Ck
such that ‖ζ‖ ≤

√
2 and ‖bζ‖ = 1. Put ξ = bζ. We have

(p⊗ ωξ)(X ⊗ 1) = (id⊗ ωζ)[(p⊗ b)(X ⊗ 1)(p⊗ b)]
= (id⊗ ωζ)[(X ⊗ 1)(α⊗ id)(b)(p⊗ b)]

hence ‖(p⊗ ωξ)(X ⊗ 1)‖ ≤ 2η.

Denoting Ψk : A or G → B(H ⊗ Ck) the amplification Ψk(a) = Ψ(a) ⊗ id, and L(µ) = (µ ⊗
id)(W ) ∈ C∗r (G) for µ ∈ `1(G), this implies |ωξ(Ψk(L(µ)))| ≤ 2η‖µ‖1 if µ is supported on p. Note that
h(L(µ)) = µ(p0), where p0 is the support of ε, and L(ε) = 1. Hence if now µ is supported on p0 +p we

have |(ωξ ◦Ψk − h)(L(µ))| ≤ 2η‖µ‖1. Writing ξ =
∑k

i=1 ξi⊗ ei and denoting ϕ ∈ S(A) the sum of the

restrictions of the forms ωξi to A, we have ωξ(Ψ
k(L(µ))) = ϕ(Ψ(L(µ))). Thus by letting η → 0 we see

that h(L(µ)) belongs to the closure of {ϕ(Ψ(L(µ))) : ϕ ∈ S(A)}. Finally since all elements x ∈ C[G]
can be written x = L(µ) as above, Lemma 3.22 shows that Ψ factors h. �

Corollary 4.21. If G admits a G-boundary with a strongly C∗-faithful action, then G has the PAP.
In particular, G is C∗-simple.
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Proof. By Corollary 4.19, the action of G on C(∂FG) is strongly C∗-faithful. Let Ψ : C∗r (G)→ C(∂FG)
be a G-equivariant ucp map. By G-injectivity, extend it to E : C(∂FG)orG→ C(∂FG). By G-rigidity,
E is a conditional expectation. We can thus apply Theorem 4.20 which shows that Ψ factors h, and
by Corollary 3.24, G has the PAP. By Proposition 3.9, G is C∗-simple. �

5. The boundary of FUF is a G-boundary

In this section we prove that C(∂GFUF ) is an FUF -boundary, using the unique stationarity method
from [KKSV22]. We use the notation from Section 2.2. The main object of the proof is the canonical
“harmonic state” on C(∂FUF ) that we describe now.

Denote qTrn =
∑
|x|=n qTrx, dimq(n) =

∑
|x|=n dimq(x) and qtrn = qTrn(·)/ dimq(n) — which is

different from
∑
|x|=n qtrx. We have the following convolution formula in `1(FUF ):

(3) qTrx ∗ qTry =
∑

zm(z, x⊗ y) qTrz,

where m(z, x⊗ y) = dim Hom(z, x⊗ y). According to this formula and to the fusion rules of FUF we
have qTr1 ∗ qTrn = qTrn+1 +2 qTrn−1 for n ≥ 1. Since qTr1(1) = dimq(u) +dimq(ū) = 2[2]q, this gives
in particular 2[2]q dimq(n) = dimq(n+ 1) + 2 dimq(n−1). Denoting κ the unique number in ]0, 1[ such

that κ+ κ−1 =
√

2[2]q, this yields dimq(n) =
√

2
n
[n+ 1]κ.

More generally, if µ is a probability measure on I we denote ψµ =
∑
µ(x) qtrx the associated state

on c0(G). It is shown in [VVV10] that if µ is generating and finitely supported, then the sequence
ψ∗nµ converges ∗-weakly on B = C(βGFUF ) ⊂ `∞(FUF ) to a KMS state ω ∈ B∗, which factors to a
faithful state still denoted ω on B∞. Moreover the “µ-harmonic state” ω is ψµ-stationary, meaning
that ψµ ∗ ω = ω, and the corresponding Poisson map Pµ : C(∂GFUF ) → H∞(FUF , µ) is completely
isometric.

Now we restrict to the case µ = µ1 := 1
2(δu + δū), i.e. ψµ = qtr1, which is sufficient to prove that

C(∂GFUF ) is an FUF -boundary. From the remarks above it follows that qtr∗n1 is a convex combination
of the states qtrk, 0 ≤ k ≤ n, k+n even. We show below that already the sequence (qtrn)n converges
∗-weakly on B to a state ω ∈ B∗, which then coincides clearly with the harmonic state of the previous
paragraph. We also compute ω explicitly, although we will not need it in the sequel.

Lemma 5.1. Fix x ∈ I, x 6= 1, and a ∈ px`
∞(FUF ) ' B(Hx). Then qtrn(ψx,∞(a)) converges as

n → ∞. Moreover, let l ∈ N∗ be the unique integer such that x ' x′ ⊗ α(l) with x′ ∈ I, α ∈ {u, ū}.
Then the limit is:

lim
n∞

qtrn(ψx,∞(a)) = ω(ψx,∞(a)) = qtrx(a)× ωI(∂I(x)), where

ωI(∂I(x)) = dimq(x)
(
κ√
2

)|x| (
1− κ√

2

[l]q
[l+1]q

)
.

Proof. If z ⊂ x ⊗ y with |z| = |x| + |y| we have qTrz = qTrx⊗ qTry on B(Hz) ⊂ B(Hx) ⊗ B(Hy).
Observe moreover that (id⊗ qTry)(P (z, x⊗ y)) = (dimq(z)/ dimq(x))idx since this element of B(Hx)
is an intertwiner, hence a multiple of idx. From this we get

qTrz(ψx,z(a)) = (qTrx⊗ qTry)[P (z, x⊗ y)(a⊗ idy)] =
dimq(z)
dimq(x) qTrx(a).

Summing over z ∈ In, with n ≥ |x|, we get qTrn(ψx,∞(a)) = dimq(x, n) qtrx(a), where we put
dimq(x, n) =

∑
{dimq(z) | |z| = n, z ≥ x}. Thus it remains to show that dimq(x, n)/ dimq(n) has the

limit given in the statement when n → ∞. According to the fusion rules the sequence (dimq(x, n))n
satisfies the same recursion equation than (dimq(n))n, but with a different initialization. This already
shows the existence of the limit.

To compute the limit, first note that dimq(x, n) = dimq(x
′) dimq(α

(l), n− |x′|). Moreover dimq(n−
|x′|)/ dimq(n) → (κ/

√
2)|x

′| as n → ∞, thanks to the formula dimq(n) =
√

2
n
[n + 1]κ. As a result it

suffices to consider the case x = α(l). In this case we obtain the result by solving the above recursion
relation with the initialization dimq(x, l) = dimq(x) = [l + 1]q and dimq(x, l + 1) = dimq(xu) +
dimq(xū) = [2]q[l + 1]q + [l + 2]q. �

The result above completely determines the harmonic state ω on C(∂GFUF ) and in particular the

classical probability measure ωI on βI. We get in particular ωI(∂I(x)) ≤ ([2]qκ/
√

2)|x|. One can

check that [2]qκ/
√

2 < 1, and thus ωI is non-atomic. Note that for arbitrary µ it is already shown in

[VVV10] that ωI has no atoms at points of the form xα(∞), and in [VV08] that ωI has no atoms at
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all. The following Lemma can be seen as a quantitative and uniform version of the fact that ωI has
no atoms at points of the form xα(∞), in the case µ = µ1: indeed by taking the limit n→∞ it yields
ωI(∂I(xα(k+1))) ≤ 2−k for any x ∈ I, k ∈ N.

Lemma 5.2. Denote I
(p,k)
n ⊂ In the set of words y ∈ In which have a repetition of letters between

the pth and (p + k)th letter, i.e. we have y ' y′ ⊗ y′′ with p ≤ |y′| ≤ p + k. Denote qtr
(p,k)
n =

dimq(n)−1
∑
{qTry | y ∈ I

(p,k)
n }. Then for all n ≥ p+ k we have

‖ qtrn− qtr(p,k)
n ‖ ≤ 2−k.

Proof. We have dimq(n)‖ qtrn− qtr
(p,k)
n ‖ =

∑
{qTry(1) | y ∈ cI

(p,k)
n }. Any y ∈ cI

(p,k)
n = In \ I(p,k)

n can

be written y = y1α
(k+1)y2 with |y1| = p− 1, α = u or ū. Observe moreover that dimq(y1α

(k+1)y2) ≤
dimq(y1zy2) for any z ∈ Ik+1, hence qTry(1) = dimq(y) ≤ 2−k−1

∑
z∈Ik+1

dimq(y1zy2). Summing over

y1 ∈ Ip−1, α ∈ {u, ū} and y2 ∈ In−p−k this yields dimq(n)‖ qtrn− qtr
(p,k)
n ‖ ≤ 2−k

∑
y1,z,y2

dimq(y1zy2) =

2−k dimq(n). �

We prove now that ∂GFUF is indeed a FUF -boundary, using the unique stationarity method from
[KKSV22]. We still work with the harmonic state ω on C(∂GFUF ) induced by ψµ = qtr1 ∈ `∞(FUF )∗.
Recall that ω is qtr1-stationary, meaning that qtr1 ∗ ω = ω, and the corresponding Poisson map
P1 = (id ⊗ ω)β : C(∂GFUF ) → H∞(FUF , qtr1) ⊂ `∞(FUF ) is completely isometric [VVV10]. In this
setting it follows that ∂GFUF is an FUF -boundary if one can prove that ω is the unique qtr1-stationary
state ν on C(∂GFUF ) [KKSV22].

This unique stationarity result was established in [HHN22] under the additional assumption that ν
is invariant with respect to the adjoint action of the dual compact quandum group — in other words
ω is the unique stationary state with respect to the natural action of the Drinfeld double D(FUF )
on ∂GFUF . Considering the action of the Drinfeld double makes the situation much more rigid: for
instance in the orthogonal case, ∂GFOF is the only non-trivial D(FOF )-boundary (see Example 3.19
of [HHN22]).

We start with the intermediate goal of proving that a qtr1-stationary state ν on C(∂GFUF ) has

no atoms at classical points of the form xα(∞) ∈ ∂I. If FUF is unimodular, i.e. F is a multiple of a
unitary matrix, this is easy. Indeed in this case, the left and right quantum traces are equal and in
particular `∞(I) ⊂ `∞(FUF ) is stable under left convolution by qtr1, which then corresponds to the
Markov operator of a classical random walk on I. But Proposition 3.23 of [HHN22] shows that this
classical random walk has a unique stationary probability measure, so that necessarily νI = ωI , which
is already known to have no atoms at points xα(∞), as recalled above.

The general case is more involved but still follows the classical strategy: if ν is a µ-stationary
measure on the Gromov boundary ∂GFN of a classical free group, the function h : x → ν({x}) on
∂GFN is summable and µ-harmonic with respect to the action of FN on its boundary. Since all
orbits of the action are infinite, this implies h = 0. One can also work with the associated functions
γ 7→ h(γ · x0) on FN , which are easier to manipulate in the quantum case — this is the “classical
analogue” for the elements h, h̄ introduced below.

Fix a qtr1-stationary state ν on C(∂GFUF ) ; we still denote ν the induced state on C(βGFUF ) ⊂
`∞(FUF ). Denote h(k) = Pν(πu(k)) = (id ⊗ ν)∆(πu(k)) and consider the decreasing limit h =

limk∞ h
(k) ⊂ `∞(FUF ). Similarly, denote h̄(k) = Pν(πū(k)) and h̄ = limk∞ h̄

(k). Our goal is to
prove that h = h̄ = 0.

Lemma 5.3. Consider the element h = (hy)y∈I ∈ `∞(FUF ) associated to a state ν ∈ C(∂GFUF )∗

as above. For x ∈ I(ū) and l ∈ N we have hu(2l)x = pu(2l) ⊗ hx in the identification B(Hu(2l)x) '
B(Hu(2l))⊗B(Hx). Similarly for x ∈ I(u) we have hu(2l+1)x = pu(2l+1) ⊗ h̄x.

Proof. Take k > 2l. Start with x = 1. We have (pu(2l) ⊗ py)∆(pu(k)z) 6= 0 iff u(k)z ⊂ u(2l) ⊗ y iff

y ⊂ u(2l)⊗u(k)z iff y = u(k+2m)z with |m| ≤ l. In particular (pu(2l)⊗py)∆(πu(k)) 6= 0⇒ y ∈ I(u(k−2l)).

On the other hand for y ∈ I(u(k+2l)), all subobjects of u(2l) ⊗ y are in I(u(k)). As a result we have

(4) pu(2l) ⊗ πu(k+2l) ≤ (pu(2l) ⊗ 1)∆(πu(k)) ≤ pu(2l) ⊗ πu(k−2l) .
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Coming back to a general x ∈ I(ū) we have as well (pu(2l)x ⊗ py)∆(pu(k)z) 6= 0 iff u(k)z ⊂ u(2l)x⊗ y
iff y ⊂ x̄u(2l) ⊗ u(k)z iff y = x̄u(k+2m)z with |m| ≤ l. Moreover in this case we have u(2l)x ⊗ y =

u(2l) ⊗ x ⊗ x̄ ⊗ u(k+2m)z =
⊕

t⊂x⊗x̄ u
(2l) ⊗ t ⊗ u(k+2m)z, and the objects t appearing in the sum

start with ū, except t = 1. As a result the isometric morphism V (u(k)z, u(2l)x ⊗ y) has to factor as

(id⊗ V (u(k+2m)z, x⊗ x̄u(k+2m)z))V (u(k)z, u(2l) ⊗ u(k+2m)z). Recalling from Section 2.2 that one can

use such morphisms to compute the coproduct, we obtain for y = x̄u(k+2m)z:

(pu(2l)x ⊗ py)∆(pu(k)z) = (pu(2l) ⊗ px ⊗ py)(id⊗∆)[(pu(2l) ⊗ pu(k+2m)z)∆(pu(k)z)]

= (pu(2l) ⊗ px ⊗ py)(id⊗∆)[(pu(2l) ⊗ 1)∆(pu(k)z)],

since z and m are uniquely determined by y. Here we are using the identifications pu(2l)x`
∞(FUF ) '

B(Hu(2l)x) ' B(Hu(2l))⊗B(Hx) ' pu(2l)`∞(FUF )⊗ px`∞(FUF ). Summing over z (first) and y gives

(pu(2l)x ⊗ 1)∆(πu(k)) = (pu(2l) ⊗ px ⊗ 1)(id⊗∆)[(pu(2l) ⊗ 1)∆(πu(k))].

Now we use (4) wich yields:

pu(2l) ⊗ [(px ⊗ 1)∆(πu(k+2l))] ≤ (pu(2l)x ⊗ 1)∆(πu(k)) ≤ pu(2l) ⊗ [(px ⊗ 1)∆(πu(k−2l))].

Finally we apply (id ⊗ id ⊗ ν) to obtain pu(2l) ⊗ h
(k+2l)
x ≤ h

(k)

u(2l)x
≤ pu(2l) ⊗ h

(k−2l)
x . Letting k → ∞

yields hu(2l)x = pu(2l) ⊗ hx.

The odd case works similarly. We have (pu(2l+1)x ⊗ py)∆(pu(k)z) 6= 0 iff u(k)z ⊂ u(2l+1)x ⊗ y iff

y ⊂ x̄ū(2l+1) ⊗ u(k)z iff y = x̄ū(k+2m+1)z with −l − 1 ≤ m ≤ l. When x = 1 we obtain

pu(2l+1) ⊗ πū(k+2l+1) ≤ (pu(2l+1) ⊗ 1)∆(πu(k)) ≤ pu(2l+1) ⊗ πū(k−2l−1) .

In general if y = x̄ū(k+2m+1)z we obtain successively:

(pu(2l+1)x ⊗ py)∆(pu(k)z) = (pu(2l+1) ⊗ px ⊗ py)(id⊗∆)[(pu(2l+1) ⊗ pū(k+2m+1)z)∆(pu(k)z)],

(pu(2l+1)x ⊗ 1)∆(πu(k)) = (pu(2l+1) ⊗ px ⊗ 1)(id⊗∆)[(pu(2l+1) ⊗ 1)∆(πu(k))] and

pu(2l+1) ⊗ [(px ⊗ 1)∆(πū(k+2l+1))] ≤ (pu(2l+1)x ⊗ 1)∆(πu(k)) ≤
≤ pu(2l+1) ⊗ [(px ⊗ 1)∆(πū(k−2l−1))].

Applying (id ⊗ id ⊗ ν) this yields pu(2l+1) ⊗ h̄(k+2l+1)
x ≤ h

(k)

u(2l+1)x
≤ pu(2l+1) ⊗ h̄(k−2l−1)

x and the result
follows by taking the limit k →∞. �

Proposition 5.4. Let ν be a qtr1-stationary state on C(∂GFUF ). Then νI has no atoms at points of

the form xα(∞), i.e. we have limk∞ ν(πxα(k)) = 0 for all x ∈ I.

Proof. From the stationarity property (qtr1⊗ν)∆ = ν one easily obtains harmonicity of the elements
h, h̄ considered in Lemma 5.3: we have (id ⊗ qtr1)∆(h) = h and (id ⊗ qtr1)∆(h̄) = h̄. We have
(px ⊗ qtr1)∆(pz) 6= 0 iff z ⊂ x⊗ (u⊕ ū), hence the harmonicity equation for h can be written

(5) hx = 1
2(px ⊗ qtrα)∆(hxα) + 1

2(px ⊗ qtrᾱ)∆(hxᾱ) + 1
2(px ⊗ qtrᾱ)∆(hx′).

if x = x′α with α ∈ {u, ū} (we put hx′ = 0 if x = 1).
Consider the function ϕ : I → R+, x 7→ qtrx(hx). Since quantum traces are compatible with

subobjects we have, for z ⊂ x ⊗ y and az ∈ B(Hz): (qTrx⊗ qTry)∆(az) = qTrz(az). Thus, applying
qtrx to (5) we obtain

ϕ(x) = 1
2p(x, xα)ϕ(xα) + 1

2p(x, xᾱ)ϕ(xᾱ) + 1
2p(x, x

′)ϕ(x′),

where p(x, y) = dimq(y)/ dimq(x) dimq(u) if x, y are neighbours in the classical Cayley graph of FUF ,
i.e. y ⊂ x⊗ (u⊕ ū). Note that with our notation xα = x⊗ α so that p(x, xα) = 1, and on the other
hand xᾱ ⊕ x′ ' x ⊗ ᾱ so that p(x, xᾱ) + p(x, x′) = 1. In short, ϕ is harmonic with respect to the
classical random walk on I with transition probabilities p(x, y).

Besides, we claim that
∑

x∈I+(ū) ϕ(x) ≤ 1, where I+(ū) = I(ū) ∪ {1}. To see this, take a finite

subset F ⊂ I+(ū) and put k = 1 + maxx∈F |x|, so that the subsets I(x̄u(k)) ⊂ ∂I are pairwise disjoint
when x ∈ F . Consider the positive elements

ηx = (qtrx⊗id)∆(πu(k)) ∈ C(βGFUF ).

We have pyηx 6= 0 iff there exists z ∈ I such that u(k)z ⊂ x ⊗ y, equivalently, y ⊂ x̄ ⊗ u(k)z. If

x ∈ I+(ū) we have x̄⊗u(k)z = x̄u(k)z, hence we get ηx = πx̄u(k)ηx. The projections πx̄u(k) are pairwise
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orthogonal when x ∈ F , hence we have ‖
∑

x∈F ηx‖ = maxx∈F ‖ηx‖ ≤ 1. Since ν is a state we can
then write

1 ≥ ν
(∑

x∈F ηx
)

=
∑
x∈F

qtrx(h(k)
x ) ≥

∑
x∈F

qtrx(hx) =
∑
x∈F

ϕ(x).

This holds for any finite F ⊂ I+(ū), hence he claim follows. Working with the elements η̄x = (qtrx⊗id)
∆(πū(k)) ∈ C(βGFUF ) we see similarly that

∑
x∈I+(u) ϕ̄(x) ≤ 1, where ϕ̄(x) = qtrx(h̄x).

In particular ϕ attains a maximum M on I+(ū) and ϕ̄ attains a maximum M̄ on I+(u). For

y ∈ I \ I+(ū) we can write y = u(2l)x with x ∈ I(ū) or y = u(2l+1)x with x ∈ I(u). In the first case

we apply qtru(2l)x = qtru(2l) ⊗ qtrx to the identity of Lemma 5.3, which yields ϕ(u(2l)x) = ϕ(x) ≤ M .

In the second case we have similarly ϕ(u(2l+1)x) = ϕ̄(x) ≤ M̄ . Altogether we see that ϕ attains the
maximum max(M,M̄) on I. Since it is harmonic, it has to be constant. Since it is summable on
I+(ū), which is infinite, we have in fact ϕ = 0. Hence h = 0. Similarly ϕ̄ = 0 and h̄ = 0.

In particular we already have ε(h) = limk∞ ν(πu(k)) = 0. Consider more generally a point xα(∞) ∈
∂I. Without loss of generality, one can assume that the last letter of x is α, i.e. x̄ ∈ I(ᾱ), so that

xα(k)z = x ⊗ α(k)z for all k ∈ N∗, z ∈ I. We have then (px̄ ⊗ py)∆(pα(k)z) 6= 0 iff y = xα(k)z and in

that case one can take V (α(k)z, x̄⊗ y) = (dimq x̄)−1/2(tx̄ ⊗ idα(k)z) so that

(px̄ ⊗ 1)∆(pα(k)z) = (dimq x̄)−1(tx̄t
∗
x̄ ⊗ pα(k)z),

where we identify Hxα(k)z ' Hx ⊗Hα(k)z. We apply qtr′x̄⊗idx ⊗ idα(k)z to this identity, where qtr′x̄ =
t∗x(id⊗ · )tx is the right quantum trace. According to the conjugate equations, this yields (qtr′x̄⊗id)∆
(pα(k)z) = (dimq x̄)−1(px⊗pα(k)z) = (dimq x̄)−1pxα(k)z. Summing over z we obtain (qtr′x̄⊗1)∆(πα(k)) =
(dimq x̄)−1πxα(k) . Finally we can apply ν and take the limit k →∞ to get

lim
k∞

ν(πxα(k)) = (dimq x̄) lim
k∞

qtr′x̄(h
(k)
x̄ ) = (dimq x̄) qtr′x̄(hx̄) = 0,

if α = u. If α = ū the same argument holds with h replaced by h̄. �

We can now prove our main unique stationarity result. The global strategy is the same as in the
orthogonal case, see [KKSV22], however the techniques are very different. The analysis of ∂FOF
ultimately relies on the geometry of the fusion rules in the Temperley-Lieb category. This geometry
also appears in the case of FUF , but only over the points of the form xα(∞) ∈ ∂I. Thanks to the
non-atomicity result above, we will be able to ignore these points, and thus our analysis will rely only
on the combinatorics of the free monoid over u, ū, which is more elementary than the geometry of the
Temperley-Lieb category.

Theorem 5.5. If N ≥ 3, the harmonic state ω is the only qtr1-stationary state on C(∂FUF ).

Proof. Let ν be a qtr1-stationary state on B∞. As in [KKSV22] we shall prove that ν ≤ ω, which
implies ν = ω because both maps are states. For this we fix x1 ∈ I, ax1 ∈ B(Hx1)+ with ‖ax1‖ ≤ 1,
and we put a = ψx1,∞(ax1). It suffices then to prove ν(a) ≤ ω(a). For any z ∈ I we denote
az = pza = ψx1,z(ax1) ∈ B(Hz) (which vanishes unless z ≥ x1).

By Proposition 5.4 the measure νI has no atoms at points of the form x1α
(∞) with α = u or ū,

hence we have the decreasing limit ν(πx1α(k))) →k νI({x1α
(∞)}) = 0. Take ε > 0 and choose k such

that (|x1| + k)2−k ≤ ε and ν(πx1α(k)) ≤ ε for all α = u, ū. The elements a =
∑

y∈I ψx1,x1y(ax1) and

a′ :=
∑

x2∈Ik ψx1x2,∞(ax1x2) =
∑

x2∈Ik,y∈I ψx1,x1x2y(ax1) are equal from length |x1| + k on, meaning

that pla = pla
′ if l ≥ |x1| + k. Since ν, seen as a state on B, vanishes on c0(G), we obtain the

decomposition ν(a) = ν(a′) =
∑

x2∈Ik ν(ψx1x2,∞(ax1x2)). For x2 = α(k), α = u, ū and x = x1x2 we

have ν(ψx,∞(ax)) ≤ ε since ‖νψx,∞‖ = ν(πx1α(k)) ≤ ε. Hence ν(a) ≤
∑

x2∈I′k
ν(ψx1x2,∞(ax1x2)) + 2ε,

where I ′k = Ik \ {u(k), ū(k)}.
Fix now x = x1x2 with x2 ∈ I ′k and consider ν(ψx,∞(ax)). By iterating the stationarity identity

qtr1 ∗ ν = ν we obtain qtrn ∗ ν = ν for any n. Applying Lemma 2.3 with k replaced by |x1|+ k and ε
replaced by 2−kε we get r such that

(6) ν(ψx,∞(ax)) = (qtrn⊗ν)∆(ψx,∞(a)) ≤ 2−kε+
∑n

l=0(qtrn⊗νψr,∞)(bn+r−2l),

where bs = (pn ⊗ pr)∆(as) =
∑

(py ⊗ pz)∆(aw), with the sum running over y ∈ In, z ∈ Ir and w ∈ Is,
w ≥ x (so that ψ|x|,s(ax) =

∑
aw).
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We start with the terms l > n − |x| in (6). For such an l we shall show that the positive linear
form ϕ : ax 7→ (qtrn⊗νψr,∞)(bn+r−2l) has a small norm for large n. We first apply Lemma 5.2 with

p = |x| and k replaced by 2k, getting ‖ϕ − ϕ′‖ ≤ 2−2k, where ϕ′(ax) = (qtr
(|x|,2k)
n ⊗νψr,∞)(bn+r−2l).

We now prove a non-trivial estimate for ‖ϕ′‖ = ϕ′(px) = (qtr
(|x|,2k)
n ⊗νψr,∞)(cn+r−2l), where cs =∑

x≤w∈Is(pn ⊗ pr)∆(pw).

Take y ∈ I(|x|,2k)
n and z ∈ Ir such that (py ⊗ pz)cn+r−2l 6= 0: then there exists a unique w ∈ In+r−2l

such that w ≥ x and w ⊂ y ⊗ z. We have then (py ⊗ pz)∆(pw) = V (w, y ⊗ z)V (w, y ⊗ z)∗. Since
n− l < |x| we can write y ' y1y2⊗y3 with |y1| = n− l and |x| ≤ |y1y2| ≤ |x|+2k. Then we must have
z ' ȳ3⊗ȳ2z

′, because y⊗z contains w of length n+r−2l, hence the last l letters y2y3 of y must simplify
with the first l letters of z. Thus we can take V (w, y⊗ z) = (id⊗ ty3 ⊗ id)V (w, y1y2⊗ ȳ2z

′)/‖ty3‖. We
have as well qTry = qTry1y2 ⊗ qTry3 and we can perform the following computation:

‖ty3‖2 × (qTry ⊗pz)[V (w, y ⊗ z)V (w, y ⊗ z)∗] =

= (qTry1y2 ⊗ qTry3 ⊗pz)[(idy1y2 ⊗ ty3 ⊗ idȳ2z′)P (w, y1y2 ⊗ ȳ2z
′)(idy1y2 ⊗ t∗y3 ⊗ idȳ2z′)]

= (qTry3 ⊗pz)[(ty3 ⊗ idȳ2z′)(qTry1y2 ⊗id)[P (w, y1y2 ⊗ ȳ2z
′)](t∗y3 ⊗ idȳ2z′)]

= Q−2
ȳ3 ⊗ (qTry1y2 ⊗id)[P (w, y1y2 ⊗ ȳ2z

′)] ≤ ‖Q−2
ȳ3 ‖dimq(y1y2)pz,

since ‖ qTry1y2 ‖ = dimq(y1y2) and (qTry3 ⊗idȳ3)(ty3t
∗
y3) = Q−2

ȳ3 .

Observe moreover that ‖ty3‖2 = dimq(y3) = dimq(y)/ dimq(y1y2). Summing the previous estimate

over y ∈ I(|x|,2k)
n and z ∈ Ir we obtain, since νψr,∞ is a state:

‖ϕ′‖ = dimq(n)−1∑
y∈I(|x|,2k)n

(qTry ⊗νψr,∞)(cn+r−2l)

≤ dimq(n)−1∑
y∈I(|x|,2k)n

‖Q−1
ȳ3 ‖

2

dimq(y3)2
dimq(y).

According to Lemma 2.2 we have ‖Q−1
ȳ3 ‖/dimq(y3) ≤ (qρ)|y3| ≤ (qρ)n−|x|−2k. For the remaining

sum we have by definition dimq(n)−1
∑

y dimq(y) ≤ 1, hence altogether ‖ϕ′‖ ≤ (qρ)2n−2|x|−4k and

‖ϕ‖ ≤ 2−2k + (qρ)2n−2|x|−4k. Recall now that qρ < 1 when N ≥ 3. Letting n→∞ we thus obtain

lim sup
n∞

∑n
l=n−|x|+1(qtrn⊗νψr,∞)(bn+r−2l) ≤ |x|2−2k‖ax‖ ≤ |x|2−2k,

since there are |x| terms in the sum.

Then we consider the terms l ≤ n − |x| in (6). Take y, z ∈ I with |y| = n, |z| = r. For each
s = n+ r − 2l there is at most one wl = xy′lz

′
l ≥ x of length s such that wl ⊂ y ⊗ z, corresponding to

a unique vl of length l such that one can write y = xy′lv̄l, z = vlz
′
l. Denote p the maximal length of

such a word vl, with p ≤ n− |x|. We have then
⊕p

l=0wl ⊂ y ⊗ z and

n−|x|∑
l=0

(qTry ⊗pz)(bs) =

p∑
l=0

(qTry ⊗pz)[V (wl, y ⊗ z)(ax ⊗ idy′lz
′
l
)V (wl, y ⊗ z)∗].

Now recall that we have x = x1x2, with x2 ∈ I ′k which can thus be written x2 = x′2 ⊗ x′′2. We
have then y = x1x

′
2 ⊗ x′′2y′lv̄l, wl = x1x

′
2 ⊗ x′′2y′lz′l, so that qTry = qTrx1x′2 ⊗ qTrx′′2y′l

and we can take

V (wl, y⊗z) = idx1x′2⊗V (x′′2y
′
lz
′
l, x
′′
2y
′
lv̄l⊗z). On the other hand we have by definition ax = ψx1,x(ax1) =

ψx1x′2,x(ax1x′2), and since x = x1x
′
2⊗ x′′2, we can take V (x, x1x

′
2⊗ x′′2) = id to compute ψx1x′2,x, so that

finally ax = ax1x′2 ⊗ idx′′2 . We have then

(qTry ⊗pz)[V (wl, y ⊗ z)(ax ⊗ id)V (wl, y ⊗ z)∗] =

= qTrx1x′2(ax1x′2)× (qTrx′′2y′l
⊗pz)(P (x′′2y

′
lz
′
l, x
′′
2y
′
lv̄l ⊗ z))

= qTrx1x′2(ax1x′2)
dimq(x

′′
2y
′
lz
′
l)

dimq(z)
× pz.
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Since
⊕p

l=0 x
′′
2y
′
lz
′
l ⊂ x′′2y′lv̄l ⊗ z we get the following upper bound for the sum over l:

n−|x|∑
l=0

(qTry ⊗pz)(bs) ≤ qTrx1x′2(ax1x′2)
dimq(x

′′
2y
′
lv̄l ⊗ z)

dimq(z)
× pz

= qtrx1x′2(ax1x′2) dimq(y)pz = qtrx(ax) dimq(y)pz.

Now we make the sum over y and z. Since we are in the case where less than n − |x| letters are
simplified in the tensor product y ⊗ z, the terms where y does not start with x vanish and we get

n−|x|∑
l=0

(qTrn⊗pr)(bs) ≤ qtrx(ax)pr ×
∑
{dimq(y); |y| = n, y ≥ x}.

Finally since ν is a state we have νψr,∞(pr) ≤ 1 and we obtain, using the notation dimq(x, n) from
the previous lemma:

n−|x|∑
l=0

(qtrn⊗νψr,∞)(bs) ≤ qtrx(ax)
dimq(x, n)

dimq(n)
.

Note that as n→∞ the right-hand side tends to qtr(ax)ωI(∂I(x)) = ω(ψx,∞(ax)).

Altogether (6) yields ν(ψx,∞(ax)) ≤ 2−kε + |x|2−2k + ω(ψx,∞(ax)) for any x = x1x2, x2 ∈ I ′k.

Summing over x′2, which takes less than 2k values, this yields ν(a) ≤ ε+ (|x1|+ k)2−k + ω(a) + 2ε ≤
ω(a) + 4ε. This is true for any ε > 0, hence ν(a) ≤ ω(a). This is true for every a ∈ ψx1,∞(B(Hx1)+),
hence ν = ω on ψx1,∞(B(Hx1)) for every x1, and finally ν = ω. �

Corollary 5.6. If N ≥ 3, the Gromov boundary of FUF is an FUF -boundary.

Proof. It is already known that the Poisson map P1 = (id ⊗ ω)β : C(∂GFUF ) → H∞(FUF , qtr1) ⊂
`∞(FUF ) is completely isometric [VVV10]. Taking into account the unique stationarity result of
Theorem 5.5, we can thus apply [KKSV22, Theorem 4.19] which shows that that ∂GFUF is an FUF -
boundary. �
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