Topological quantum groups (a survey)

Roland Vergnioux

University of Normandy (France)

Lille, October 8th, 2024

目

÷

4 D F

 QQ

Outline

[Various frameworks](#page-1-0)

- [Compact quantum groups](#page-2-0)
- [Representation categories](#page-8-0)
- [Discrete quantum groups](#page-9-0)
- [Locally compact quantum groups](#page-10-0)

[Many examples](#page-11-0)

- $SU_a(2)$ and q[-deformations](#page-12-0)
- [Orthogonal free quantum groups](#page-18-0)
- [More examples](#page-20-0)

3 [An analytical property:](#page-21-0) C*-simplicity

- [Properties of interest](#page-22-0)
- ä [The classical case](#page-23-0)
- [Quantum boundary actions](#page-24-0)
- **[Quantum Gromov boundaries](#page-27-0)**

 Ω

化重新润滑脂

(□) (/ □)

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet (Δ \otimes id) Δ = (id \otimes Δ) Δ ,
- $\overline{\text{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \Delta(A)(A \otimes 1).$

- 3

 QQ

 \rightarrow 3 \rightarrow 3 \rightarrow

4 **E** F

- ← 冊 →

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$,
- $\overline{\text{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \Delta(A)(A \otimes 1).$

C*-algebra: Complete, normed *-algebra A with $\|a^*a\| = \|a\|^2$. **Always** $A \simeq B \subset B(H)$ closed *-subalgebra, H Hilbert space. **Commutative case:** $A \simeq C_0(X)$, X locally compact. Positive elements: a^*a , $a \in A$. **Tensor product:** $A \otimes B = \overline{A \odot B} \subset B(H \otimes K)$ if $A \subset B(H)$, $B \subset B(K)$.

 QQ

イロト イ何 トイヨト イヨト ニヨー

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$,
- $\widehat{\text{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \Delta(A)(A \otimes 1).$

Theorem (Woronowicz)

Any Woronowicz C*-algebra A has a unique Haar state, i.e. a unital positive linear functional h : $A \to \mathbb{C}$ such that $(h \otimes id)\Delta = (id \otimes h)\Delta = 1h$.

Definition

A is called reduced if $h(a^*a) = 0 \Rightarrow a = 0$. A compact quantum group $\mathbb G$ is given by a reduced Woronowicz C^* -algebra $C^r(\mathbb{G})$.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet (Δ \otimes id) Δ = (id \otimes Δ) Δ ,
- $\widehat{\text{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \Delta(A)(A \otimes 1).$

Definition

A is called reduced if $h(a^*a) = 0 \Rightarrow a = 0$. A compact quantum group $\mathbb G$ is given by a reduced Woronowicz C^* -algebra $C^r(\mathbb{G})$.

There is a reduction procedure $A \rightarrow A_r$ for Woronowicz C^* -algebras. So a compact quantum group G can in fact have many associated Woronowicz C^* -algebras $C(\mathbb{G}) \twoheadrightarrow C^r(\mathbb{G})$ — and this is interesting!

 QQ

KONKAPRA BRADE

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet (Δ \otimes id) Δ = (id \otimes Δ) Δ ,
- $\widehat{\mathfrak{s}}$ Span $\Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \, \Delta(A)(A \otimes 1).$

Theorem (Woronowicz)

Any Woronowicz C ∗ -algebra C(G) contains a unique dense ∗-subalgebra $\mathscr{O}(\mathbb{G}) \subset C(\mathbb{G})$ which is a Hopf *-algebra for the restriction of Δ : $\Delta(\mathcal{O}(\mathbb{G}))\subset \mathcal{O}(\mathbb{G})\odot \mathcal{O}(\mathbb{G}).$

A Hopf $*$ -algebra $\mathscr A$ is of the form $\mathscr O(\mathbb{G})$ iff it is generated by coefficients of *unitary* comodules \rightarrow can define CQG's at that level, too. $\mathscr{O}(\mathbb{G})$ is the same for all Woronowicz C^* -algebras $C(\mathbb{G})$ associated with $\mathbb{G}.$

- 3

イロト イ押ト イヨト イヨト

 QQ

Definition

A Woronowicz C^* -algebra is a unital C^* -algebra A equipped with a unital ∗-homomorphism ∆ : A → A ⊗ A such that

- \bullet $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$,
- $\widehat{\mathfrak{s}}$ Span $\Delta(A)(1 \otimes A) = A \otimes A = \overline{\text{Span}} \, \Delta(A)(A \otimes 1).$

Classical examples.

G compact group $\rightarrow C^{r}(\mathbb{G}) = C(G), \Delta(f) = ((r,s) \mapsto f(rs)).$ Density condition : $rs = r's$ or $sr = sr' \Rightarrow r = r'.$ $\mathscr{O}(G) = \{ \omega \circ \pi \mid \pi : G \to L(H) \text{ fd rep}, \ \omega \in L(H)^* \}.$

• Γ discrete group $\rightarrow \mathcal{O}(\mathbb{G}) \simeq \mathbb{C}[\Gamma], \Delta(g) = g \otimes g$. $C^{r}(\mathbb{G}) = C_{r}^{*}(\Gamma)$: completion of $\mathbb{C}[\Gamma]$ for $||x||_{r} = ||\lambda(x)||_{B(\ell^{2}\Gamma)}$. Other completion $C^u(\mathbb{G})$: $||x||_u = \sup\{||\pi(x)|| \mid \pi : \Gamma \to B(H)\}.$

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Representation categories

Definition

Denote $Rep(\mathbb{G})$ the category of f.-d. Hilbert $\mathscr{O}(\mathbb{G})$ -comodules, equivalently, of corepresentations $v \in B(H_v) \otimes C(\mathbb{G})$: $(id \otimes \Delta)(v) = v_{12}v_{13}$.

It is a tensor C^* -category, which is *rigid* (existence of duals), and is equipped with the canonical forgetful functor $\text{Rep}(\mathbb{G}) \to \text{Hilb}, v \mapsto H_v$.

If $C(\mathbb{G}) = C(G)$, we have $\text{Rep}(\mathbb{G}) = \text{Rep}(G)$. If $C(\mathbb{G}) = C^*(\Gamma)$, we have $\operatorname{Rep}(\mathbb{G}) = \text{f.d. } \Gamma$ -graded Hilbert spaces.

Tannaka-Krein duality: from every rigid tensor C^* -category $\mathscr C$ and unitary tensor functor $\mathscr{C} \to \mathrm{Hilb}$ one can reconstruct a compact quantum group G such that $\mathscr{C} \simeq \operatorname{Rep}(\mathbb{G})$ (and the functors agree). [Woronowicz]

 QQ

KONKAPRA BRADE

Discrete quantum groups

Discrete groups can have interesting actions on *topological spaces*, and their reduced C^* -algebras $C_r^*(\Gamma)$ have interesting *analytical properties*...

Inspired by the second class of examples, we also denote $C(\mathbb{G})=C^*_r(\mathbb{F}),$ $\mathscr{O}(\mathbb{G}) = \mathbb{C}[\mathbb{F}]$. " $\mathbb F$ is the discrete dual of $\mathbb G$."

Definition

We denote
$$
c_c(\mathbb{T}) = \{h(a \cdot) \mid a \in \mathbb{C}[\mathbb{T}]\} \subset \mathbb{C}[\mathbb{T}]^*
$$
,
\n $c_0(\mathbb{T}) = \{(\mathrm{id} \otimes \omega)(W_{\mathbb{G}}) \mid \omega \in B(\ell^2 \mathbb{T})_*\}^- \subset B(\ell^2(\mathbb{T})).$

These are non-unital (C^{*}-) algebras equipped with coproducts

$$
\Delta: c_c(\mathbb{T}) \to \mathscr{M}(c_c(\mathbb{T}) \odot c_c(\mathbb{T})), \Delta: c_0(\mathbb{T}) \to M(c_0(\mathbb{T}) \otimes c_0(\mathbb{T})).
$$

As an algebra $c_c(\mathbb{F}) \simeq \bigoplus_{\alpha \in I} L(H_\alpha)$ over $I = \operatorname{IrrRep} \mathbb{G}$. Then the *multiplicative unitary W* $_{\mathbb{G}}$ identifies with $\bigoplus_{\alpha \in I} \mathsf{v}_{\alpha}.$

 QQ

KONKAPRA BRADE

Locally compact quantum groups

Definition (Kustermans, Vaes)

A reduced C^* -algebraic quantum group is given by a C^* -algebra $A = \bar{C}^r(\mathbb{G})$ and a non-deg. $*$ -hom $\Delta: A \to M(A \otimes A)$ such that

$$
\bullet\ (\Delta\otimes\mathrm{id})\Delta=(\mathrm{id}\otimes\Delta)\Delta,
$$

- $\overline{\mathrm{Span}}(\mathrm{id}\otimes A^*)\Delta(A)=A=\overline{\mathrm{Span}}(A^*\otimes\mathrm{id})\Delta(A),$
- there exist faithful KMS weights φ , ψ on A s.t. $\forall\,\omega\in\mathcal{A}_+^*,$ $a\in\mathscr{M}^+_{\varphi|\psi}$ $\varphi((\mathrm{id}\otimes\omega)\Delta(a))=\omega(1)\varphi(a)$ and $\psi((\omega\otimes\mathrm{id})\Delta(a))=\omega(1)\psi(a)$.
- Commutative case: locally compact groups
- Pontriagin duality $\mathbb{G} \to \hat{\mathbb{G}} \to \mathbb{G}$
- Includes compact and discrete quantum groups
- But also double crossed products $\mathbb{G} \bowtie \mathbb{H}$, including the Drinfeld double $D(\mathbb{G}) = \mathbb{G} \bowtie \hat{\mathbb{G}}$ of a compact quantum group

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Outline

[Various frameworks](#page-1-0)

- [Compact quantum groups](#page-2-0)
- [Representation categories](#page-8-0)
- [Discrete quantum groups](#page-9-0)
- [Locally compact quantum groups](#page-10-0)

[Many examples](#page-11-0)

- $SU_a(2)$ and q[-deformations](#page-12-0)
- [Orthogonal free quantum groups](#page-18-0)
- [More examples](#page-20-0)

3 [An analytical property:](#page-21-0) C*-simplicity

- **[Properties of interest](#page-22-0)**
- ä [The classical case](#page-23-0)
- [Quantum boundary actions](#page-24-0)
- **[Quantum Gromov boundaries](#page-27-0)**

 Ω

化重新润滑脂

4 **E** F

Let G be a connected, simply connected compact Lie group. $\bullet \mathfrak{G} = \text{Lie}(G)_{\mathbb{C}}$, $\mathscr{U}(\mathfrak{G})$ its enveloping algebra, \rightarrow Drinfel'd–Jimbo's $\mathscr{U}_q(\mathfrak{G})$: deformation of Serre's presentation of $\mathscr{U}(\mathfrak{G})$.

The compact real form/∗-structure is deformed as well. $\mathscr{U}_q(\mathfrak{G})$ is a Hopf $*$ -algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in [0,1]$:

$$
\mathscr{U}_q(\mathfrak{G})
$$

 Ω

イロト イ押 トイヨ トイヨ トー ヨ

Let G be a connected, simply connected compact Lie group. $\mathcal{B} = \text{Lie}(G)_{\mathbb{C}}, \mathcal{U}(\mathfrak{G})$ its enveloping algebra, \rightarrow Drinfel'd–Jimbo's $\mathscr{U}_q(\mathfrak{G})$: deformation of Serre's presentation of $\mathscr{U}(\mathfrak{G})$.

The compact real form/∗-structure is deformed as well. $\mathscr{U}_{q}(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in [0,1]$:

 200

◆ ロ ▶ → 何 ▶ → 三 ▶ → 三 ▶ → 三 ▶

Let G be a connected, simply connected compact Lie group. $\rightarrow \mathfrak{G} = \text{Lie}(G)_{\mathbb{C}}, \mathscr{U}(\mathfrak{G})$ its enveloping algebra, \rightarrow Drinfel'd–Jimbo's $\mathcal{U}_q(\mathfrak{G})$: deformation of Serre's presentation of $\mathcal{U}(\mathfrak{G})$.

The compact real form/∗-structure is deformed as well. $\mathscr{U}_{q}(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in [0,1]$:

 200

◆ロト ◆母ト ◆ミト → ミト

Let G be a connected, simply connected compact Lie group. $\rightarrow \mathfrak{G} = \text{Lie}(G)_{\mathbb{C}}, \mathscr{U}(\mathfrak{G})$ its enveloping algebra, \rightarrow Drinfel'd–Jimbo's $\mathcal{U}_q(\mathfrak{G})$: deformation of Serre's presentation of $\mathcal{U}(\mathfrak{G})$.

The compact real form/∗-structure is deformed as well. $\mathscr{U}_{q}(\mathfrak{G})$ is a Hopf $*$ -algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in [0,1]$:

 \blacktriangleright also "complex semi-simple quantum groups" $D(\mathit{G_{q}}) = \mathit{G_{q}} \bowtie \hat{\mathit{G}_{q}}.$

 QQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

The case of $SU_a(2)$

Drinfel'd–Jimbo: $\mathcal{U}_q(\mathfrak{sl}(2))$ is the universal algebra generated by \bullet elements E, F, K, K $^{-1}$ and the relations $\mathit{KK}^{-1} = \mathit{K}^{-1} \mathit{K} = 1$ and

$$
KE = q^2 EK, \quad KF = q^{-2} FK, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}
$$

Copyroduct: $\Delta(E) = E \otimes K + 1 \otimes E, \Delta(F) = F \otimes 1 + K^{-1} \otimes F.$
 $\mathscr{U}_q(\mathfrak{su}(2)) = \mathscr{U}_q(\mathfrak{sl}(2))$ with $E^* = FK, F^* = K^{-1}E, K^* = K.$

Woronowicz: $C(SU_q(2)) =$ universal C^* -algebra generated by α , γ and

$$
\alpha \gamma = q \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha, \quad \gamma \gamma^* = \gamma^* \gamma
$$

$$
\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma^* \gamma = 1.
$$
 (1)

Coproduct Δ : such that $u = \left(\begin{smallmatrix} \alpha & -q\gamma^* \ \gamma & \alpha \end{smallmatrix}\right)$ is a corepresentation.

 QQQ

イロト イ押 トイヨ トイヨ トー ヨ

The case of $SU_a(2)$

Woronowicz: $C(SU_q(2)) =$ universal C^* -algebra generated by α , γ and

$$
\alpha \gamma = q \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha, \quad \gamma \gamma^* = \gamma^* \gamma
$$

$$
\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma^* \gamma = 1.
$$
 (1)

Coproduct Δ : such that $u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha \end{pmatrix}$ is a corepresentation. In fact (1) holds iff u is unitary and $u \otimes u$ fixes

$$
\xi_q = e_1 \otimes e_2 - q e_2 \otimes e_1.
$$

- In other words, $\operatorname{Rep}(\mathcal{SU}_q(2))$ is the universal tensor \mathcal{C}^* -category
	- generated by one object and one morphism $t = \cap : 1 \rightarrow \bullet \otimes \bullet$
	- subject to $t^*t = \bigcirc = q + q^{-1}$ and the duality equations.

This is the **Temperley-Lieb** category TL_q^- . The fiber functor is given by $F_q(\bullet) = \mathbb{C}^2$, $F_q(\cap) = \frac{\xi_q}{\sqrt{|q|}}$.

 200

イロト イ押 トイヨ トイヨ トー ヨ

Orthogonal free quantum groups

The Temperley-Lieb categories \mathcal{TL}^\pm_q have higher-dimensional fiber functors.

Fix $N \in \mathbb{N}$, $N \geq 2$ and $Q \in GL_N(\mathbb{C})$ such that $Q\overline{Q} = \pm I_n$. Write $\text{Tr}(Q^*Q)=q+q^{-1}$ with $q\in{]0,1]}$. Then there is a unique fiber functor $F_Q: \, T L_q^\pm \rightarrow \mathrm{Hilb}$ given by

$$
\mathsf{F}_{Q}(\bullet) = \mathbb{C}^{N}, \quad \mathsf{F}_{Q}(\cap) = \sum_{i} e_{i} \otimes Q e_{i}.
$$

Moreover all fiber functors on \mathcal{TL}^\pm_q are of this form, up to isomorphism.

Definition

The compact quantum group associated with F_Q is denoted O_O^+ ϕ_{Q}^{+} , and its discrete dual is denoted $\mathbb{F} O_Q.$ For $Q = I_N$ they are denoted O_N^+ N^+ , $\mathbb{F}O_N$.

Orthogonal free quantum groups

Fix $N \in \mathbb{N}$, $N \geq 2$ and $Q \in GL_N(\mathbb{C})$ such that $Q\overline{Q} = \pm I_n$.

Proposition (Wang, Van Daele, Banica)

The algebras $A = C^{u}(O_{Q}^{+})$ \mathcal{O}^+_Q), $\mathscr{O}(O^+_Q)$ q^+_{Q}) are presented by the entries of $u = (u_{ii}) \in M_N(A)$ with the relations: $uu^*=1=u^*u$ and $Q\bar{u}Q^{-1}=u$, where $\bar{u}=(u^*_{ij}).$

These are exactly the CQG having the same fusion ring as $SU(2)$. For $N = 2: \{O^+_0\}$ $Q_{\mathsf{Q}}^+ \mid \mathsf{N}=2$ = { $SU_{\mp q}(2) \mid 0 < q \leq 1$ }.

We call O_Q^+ $_Q^+$ the universal orthogonal quantum groups, FO_O the orthogonal free quantum groups. We have $C^u(O_N^+)$ $\binom{+}{N}/\langle [x, y] \rangle \simeq C(O_N),$ $C^*(\mathbb{F}\tilde{O}_N)/\langle u_{ij}, i\neq j\rangle \simeq C^*_u(FO_N)$, $FO_N = (\mathbb{Z}/2)^{*N}$.

Open question: does $\text{Rep}(SU_a(3))$ have higher-dim. fiber functors?

 QQ

イロ トイ押 トイヨ トイヨ トーヨー

More examples

Universal unitary quantum groups

For $N \geq 2$, $Q \in GL_N(\mathbb{C})$, define a C^* -algebra by generators and relations:

$$
C^{u}(U_{Q}^{+})=C_{u}^{*}(\mathbb{F}U_{Q})=\langle u_{ij} \mid u=(u_{ij}) \text{ and } Q\bar{u}Q^{-1} \text{ unitary}\rangle.
$$

It is a Woronowicz C^* -algebra for the coproduct s.t. $(\mathrm{id} \otimes \Delta)(u) = u_{12}u_{13}.$ The fusion ring is non-commutative ($v \otimes w \not\simeq w \otimes v$), isomorphic to the ring of the free monoid on two letters. [Banica]

Partition/easy quantum groups

A tensor \overline{C}^* -category of partitions $\mathscr P$ has objects in $\mathbb N$ and $\mathrm{Hom}(m,n)$ spanned by partitions of $m + n$ points, with the "usual operations". If $\bigcirc = N \in \mathbb{N}^*$, there is a functor $\mathcal{T}:\mathscr{P} \to \textrm{Hilb}$ with $\mathcal{T}(\bullet) = \mathbb{C}^N$ (not always faithful) and an associated CQG $\mathbb{G}_N(\mathscr{P})$. For instance :

 $\mathscr{P} = \{$ non crossing pair partitions $\} \rightarrow \mathbb{G}_N(\mathscr{P}) = O_N^+$ $_{N}^{+}.$

•
$$
\mathscr{P} = \{ \text{all partitions} \} \rightarrow \mathbb{G}_N(\mathscr{P}) = S_N
$$
,

•
$$
\mathscr{P} = \{\text{non crossing partitions}\}\rightarrow \mathbb{G}_N(\mathscr{P}) = S_N^+
$$
.

Outline

[Various frameworks](#page-1-0)

- [Compact quantum groups](#page-2-0)
- [Representation categories](#page-8-0)
- [Discrete quantum groups](#page-9-0)
- [Locally compact quantum groups](#page-10-0)

[Many examples](#page-11-0)

- $SU_a(2)$ and q[-deformations](#page-12-0)
- [Orthogonal free quantum groups](#page-18-0)
- [More examples](#page-20-0)

3 [An analytical property:](#page-21-0) C^{*}-simplicity

- [Properties of interest](#page-22-0)
- [The classical case](#page-23-0)
- [Quantum boundary actions](#page-24-0)
- **[Quantum Gromov boundaries](#page-27-0)**

 QQ

э

4 **E** F

What kind of properties?

Fix $A = C^r(\mathbb{G}) = C_r^*(\mathbb{F})$.

Is A the only Woronowicz C^* -algebra associated with \mathbb{G} ? Equivalent to amenability of **Γ**.

 $\mathbb{G} = \mathsf{G}_{q}$: yes. O_{Q}^{+} Q^+_q , U^+_q : no if $N \geq 3$. S^+_N N^+ : no if $N \geq 5$.

- Weaker approximation properties: Haagerup approximation property, weak amenability, exactness... True for F_N , $\mathbb{F}O_Q$, $\mathbb{F}U_Q$... Non-approximation properties: Property (T). True for $D(SU_q(3))$.
- Classification \rightarrow K-theory \rightarrow Baum-Connes. $K_0(C^r(S_N^+)$ $\mathcal{H}_N^{(+)}$)) $\simeq \mathbb{Z}^{N^2-2N+2}$; $\mathcal{K}_0(C^r(O_N^+)$ $(N_N^+)) \simeq \mathbb{Z} \simeq \mathcal{K}_1(\mathcal{C}^r(\mathcal{O}_N^+)$ $\binom{+}{N}$). Open question: $C^{r}(O_{N}^{+})$ $\binom{+}{N} \simeq C^{r}(O_{M}^{+})$ for $N \neq M$?
- Structure of $C_r^*(\mathbb{F})$: simplicity? traces? maximal abelian subalgebras? (Also in the von Neumann context.)

Slogan: $C(O_M^+)$ $\hat{C}_r^*(\mathbb{F}O_N)$, $C_r^*(\mathbb{F}U_N)$ are very similar to $C_r^*(\mathcal{F}_N)!$

Classical boundary actions

Simplicity of A: no proper closed bilateral ideals $I \subset A$. Note: $\mathbb{C}[F_N]$ is not (alg.) simple, but $C_r^*(F_N)$ is simple [Powers 1975].

Trace on A: positive functional $\varphi \in A_+^*$ such that $\varphi(ab) = \varphi(ba).$ Note: $C_r^*(\Gamma)$ has a canonical trace $h(\sum x_{g}g)=x_e$.

Theorem (Breuillard, Kalantar, Kennedy, Ozawa 2017)

- $C_r^*(\Gamma)$ is simple iff Γ admits an essentially free boundary action.
- $C_r^*(\Gamma)$ has a unique trace iff Γ admits a faithful boundary action.

A boundary action is an action $\Gamma \curvearrowright X$ on a compact space X which is:

• minimal: $\forall x, y \in X$ $\exists g_n \in \Gamma$ $\lim g_n \cdot x = y$,

o strongly proximal: $\forall \mu, \nu \in \text{Prob}(X)$ $\exists g_n \in \Gamma$ lim $g_n \cdot \mu = \lim g_n \cdot \nu$. Equivalently: $\forall \nu \in \text{Prob}(X)$ $\overline{\Gamma \cdot \nu} \supset X$. Example: Gromov boundary of F_N . **KOD KARD KED KED DE VOOR**

Quantum boundary actions

Action of a DQG $\mathbb \Gamma$ on a C^* -algebra A: given by $\alpha : A \to M(c_0(\mathbb \Gamma) \otimes A).$ A unital map $\mathcal{T}: \mathcal{A} \rightarrow \mathcal{B}$ between \mathcal{C}^* -algebras is

- completely positive (UCP) if $(T \otimes id)(M_n(A)_+) \subset M_n(B)_+$ for all n,
- completely isometric (UCI) if $T \otimes id$ is isometric on $M_n(A)$ for all n.

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital **Γ**-C ∗ -algebra A is a **Γ**-boundary if all UCP **Γ**-equivariant maps $T: A \rightarrow B$ are automatically UCI.

In other words, the extension $\mathbb{C} \hookrightarrow A$ is an "essential extension" in the category of unital **Γ**-C ∗ -algebras with UCP **Γ**-maps as morphisms and UCI **Γ**-maps as embeddings.

[Habbestad, Hataishi, Neshveyev 2022] constructs for any rigid tensor C^* category $\mathscr C$ the universal $\mathscr C$ -boundary (which is a $\mathscr C$ -tensor category) which corresponds to the universal D(**Γ**)-boundary of the Drinfeld double.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right\rangle \end{array} \right.$

Quantum boundary actions

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital **Γ**-C ∗ -algebra A is a **Γ**-boundary if all UCP **Γ**-equivariant maps $T: A \rightarrow B$ are automatically UCI.

The action $\mathbb{\Gamma} \curvearrowright^\alpha A$ is *faithful* if $(c_0(\mathbb{\Gamma})^* \otimes \mathrm{id}) \alpha(A)$ generates $M(c_0(\mathbb{\Gamma})).$

Theorem (KKSV 2020)

Assume that **Γ** acts faithfully on some **Γ**-boundary A. Then:

- if $\mathbb \Gamma$ is unimodular, $\mathcal C_r^*(\mathbb{ \Gamma})$ has a unique trace ;
- else $C_r^*(\mathbb{F})$ has no KMS state wrt the scaling group.

Theorem (Anderson-Sackaney, Khosravi 2024)

 \mathbb{F} unimodular and $\mathsf{C}_r^*(\mathbb{F})$ unique trace \Rightarrow there exists a faithful \mathbb{F} -boundary.

 QQ

E

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Quantum boundary actions

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital **Γ**-C ∗ -algebra A is a **Γ**-boundary if all UCP **Γ**-equivariant maps $T: A \rightarrow B$ are automatically UCI.

Note: for $\Gamma \curvearrowright X$ compact minimal, essentially free \Leftrightarrow strongly faithful: $\forall g_1,\ldots,g_n\in\Gamma\setminus\{1\}\quad\exists x\in X\quad\forall i\quad g_i\cdot x\neq x.$

Definition (Anderson-Sackaney, V.)

 $\mathbb{\Gamma} \curvearrowright A$ is *strongly C*-faithful* if for every projection $p \in Z(c_c(\mathbb{\Gamma}))$ with $\epsilon(\rho)=0$ and every $\eta>0$ there exists $k\in \mathbb{N}^*$ and $b\in (A\otimes M_k(\mathbb{C}))_+$ such that $||b|| = 1$ and $|| (p \otimes b)(\alpha \otimes \text{id})(b)|| \leq \eta$.

Theorem (ASV 2024)

If $\mathbb T$ admits a strongly C^{*}-faithful boundary action, then $C_r^*(\mathbb T)$ is simple.

KONKARN KENKEN E

Quantum Gromov boundaries

Recall that O_Q^+ \overline{Q}^+ has the same fusion rules as $SU(2)$. In particular $c_c(\mathbb{F}O_Q) \simeq \bigoplus_{n\in\mathbb{N}} L(H_n)$ with $H_{n+1}\subset H_n\otimes H_1$. By analogy with the free group case $c_c(\mathcal{F}_N)\simeq \bigoplus_{n\in \mathbb{N}} C(S_n)$ one puts

$$
C(\partial \mathbb{F} O_Q) = \varinjlim L(H_n).
$$

It has a natural structure of a unital $\mathbb{F}O_Q$ -C * -algebra [Vaes-V. 2007]. There is a similar construction for FU_Q [Vaes-Vander Vennet].

Theorem (ASV 2024)

For $N \geq 3$, $C(\partial \mathbb{F} U_Q)$ is an $\mathbb{F} U_Q$ -boundary and it is strongly C^* -faithful.

[Habbestad, Hataishi, Neshveyev 2022] shows the weaker result that $C(\partial \mathbb{F} U_{\Omega})$ is a $D(\mathbb{F} U_{\Omega})$ -boundary. Simplicity of $C_r^*(\mathbb{F} U_Q)$ is already known [Banica 1997].

Quantum Gromov boundaries

Recall that O_Q^+ \overline{Q}^+ has the same fusion rules as $SU(2)$. In particular $c_c(\mathbb{F}O_Q) \simeq \bigoplus_{n\in\mathbb{N}} L(H_n)$ with $H_{n+1}\subset H_n\otimes H_1$. By analogy with the free group case $c_c(\mathcal{F}_N)\simeq \bigoplus_{n\in \mathbb{N}} C(S_n)$ one puts

$$
C(\partial \mathbb{F} O_Q) = \varinjlim L(H_n).
$$

It has a natural structure of a unital $\mathbb{F}O_Q$ -C * -algebra [Vaes-V. 2007]. There is a similar construction for FU_Q [Vaes-Vander Vennet].

Theorem (KKSV 2020)

Assume $N \geq 3$. Then $C(\partial \mathbb{F} O_{Q})$ is an $\mathbb{F} O_{Q}$ -boundary and it is faithful.

 $N = 2$: the dual of $SU_a(2)$ is amenable \Rightarrow the only $\mathbb{F}O_Q$ -boundary is \mathbb{C} . In the unimodular case, uniqueness of trace was already known. Simplicity is known only with restrictions on Q [Vaes-V.]. Open question: is $C(\partial \mathbb{F} O_Q)$ strongly C^* -faithful?

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$