Topological quantum groups (a survey)

Roland Vergnioux

University of Normandy (France)

Lille, October 8th, 2024

э

∃ ► < ∃ ►</p>

< (T) >

Outline

1 Various frameworks

- Compact quantum groups
- Representation categories
- Discrete quantum groups
- Locally compact quantum groups

Many examples

- SU_q(2) and q-deformations
- Orthogonal free quantum groups
- More examples

3 An analytical property: C*-simplicity

- Properties of interest
- The classical case
- Quantum boundary actions
- Quantum Gromov boundaries

(4) (日本)

Definition

A Woronowicz C*-algebra is a unital C*-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

イロト 不得 トイラト イラト 一日

Definition

A Woronowicz C^{*}-algebra is a unital C^{*}-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

*C**-algebra: Complete, normed *-algebra *A* with $||a^*a|| = ||a||^2$. **Always** $A \simeq B \subset B(H)$ closed *-subalgebra, *H* Hilbert space. **Commutative case:** $A \simeq C_0(X)$, *X* locally compact. **Positive elements:** a^*a , $a \in A$. **Tensor product:** $A \otimes B = \overline{A \odot B} \subset B(H \otimes K)$ if $A \subset B(H)$, $B \subset B(K)$.

Definition

A Woronowicz C^{*}-algebra is a unital C^{*}-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

Theorem (Woronowicz)

Any Woronowicz C^{*}-algebra A has a unique Haar state, i.e. a unital positive linear functional $h : A \to \mathbb{C}$ such that $(h \otimes id)\Delta = (id \otimes h)\Delta = 1h$.

Definition

A is called *reduced* if $h(a^*a) = 0 \Rightarrow a = 0$. A *compact quantum group* \mathbb{G} is given by a reduced Woronowicz C^* -algebra $C^r(\mathbb{G})$.

Definition

A Woronowicz C^{*}-algebra is a unital C^{*}-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

Definition

A is called reduced if $h(a^*a) = 0 \Rightarrow a = 0$. A compact quantum group \mathbb{G} is given by a reduced Woronowicz C^* -algebra $C^r(\mathbb{G})$.

There is a reduction procedure $A \rightarrow A_r$ for Woronowicz C^* -algebras. So a compact quantum group \mathbb{G} can in fact have many associated Woronowicz C^* -algebras $C(\mathbb{G}) \rightarrow C^r(\mathbb{G})$ — and this is interesting!

Definition

A Woronowicz C^{*}-algebra is a unital C^{*}-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

Theorem (Woronowicz)

Any Woronowicz C*-algebra $C(\mathbb{G})$ contains a unique dense *-subalgebra $\mathscr{O}(\mathbb{G}) \subset C(\mathbb{G})$ which is a Hopf *-algebra for the restriction of Δ : $\Delta(\mathscr{O}(\mathbb{G})) \subset \mathscr{O}(\mathbb{G}) \odot \mathscr{O}(\mathbb{G}).$

A Hopf *-algebra \mathscr{A} is of the form $\mathscr{O}(\mathbb{G})$ **iff** it is generated by coefficients of *unitary* comodules \rightarrow can define CQG's at that level, too. $\mathscr{O}(\mathbb{G})$ is the same for all Woronowicz C^* -algebras $C(\mathbb{G})$ associated with \mathbb{G} .

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

A Woronowicz C^{*}-algebra is a unital C^{*}-algebra A equipped with a unital *-homomorphism $\Delta : A \rightarrow A \otimes A$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\operatorname{Span}} \Delta(A)(1 \otimes A) = A \otimes A = \overline{\operatorname{Span}} \Delta(A)(A \otimes 1).$

Classical examples.

• *G* compact group $\rightarrow C'(\mathbb{G}) = C(G), \ \Delta(f) = ((r, s) \mapsto f(rs)).$ Density condition : rs = r's or $sr = sr' \Rightarrow r = r'.$ $\mathscr{O}(G) = \{\omega \circ \pi \mid \pi : G \to L(H) \text{ fd rep}, \ \omega \in L(H)^*\}.$

• Γ discrete group $\rightarrow \mathscr{O}(\mathbb{G}) \simeq \mathbb{C}[\Gamma], \Delta(g) = g \otimes g.$ $C^{r}(\mathbb{G}) = C_{r}^{*}(\Gamma)$: completion of $\mathbb{C}[\Gamma]$ for $||x||_{r} = ||\lambda(x)||_{B(\ell^{2}\Gamma)}.$ Other completion $C^{u}(\mathbb{G}) : ||x||_{u} = \sup\{||\pi(x)|| \mid \pi : \Gamma \rightarrow B(H)\}.$

Representation categories

Definition

Denote $\operatorname{Rep}(\mathbb{G})$ the category of f.-d. Hilbert $\mathscr{O}(\mathbb{G})$ -comodules, equivalently, of *corepresentations* $v \in B(H_v) \otimes C(\mathbb{G})$: $(\operatorname{id} \otimes \Delta)(v) = v_{12}v_{13}$.

It is a tensor C^* -category, which is *rigid* (existence of duals), and is equipped with the canonical forgetful functor $\operatorname{Rep}(\mathbb{G}) \to \operatorname{Hilb}, v \mapsto H_v$.

If $C(\mathbb{G}) = C(G)$, we have $\operatorname{Rep}(\mathbb{G}) = \operatorname{Rep}(G)$. If $C(\mathbb{G}) = C^*(\Gamma)$, we have $\operatorname{Rep}(\mathbb{G}) = f.d$. Γ -graded Hilbert spaces.

Tannaka-Krein duality: from every rigid tensor C^* -category \mathscr{C} and unitary tensor functor $\mathscr{C} \to \operatorname{Hilb}$ one can reconstruct a compact quantum group \mathbb{G} such that $\mathscr{C} \simeq \operatorname{Rep}(\mathbb{G})$ (and the functors agree). [Woronowicz]

Discrete quantum groups

Discrete groups can have interesting actions on *topological spaces*, and their reduced C^* -algebras $C^*_r(\Gamma)$ have interesting *analytical properties*...

Inspired by the second class of examples, we also denote $C(\mathbb{G}) = C_r^*(\mathbb{F})$, $\mathscr{O}(\mathbb{G}) = \mathbb{C}[\mathbb{F}]$. " \mathbb{F} is the discrete dual of \mathbb{G} ."

Definition

We denote
$$c_c(\mathbb{F}) = \{h(a \cdot) \mid a \in \mathbb{C}[\mathbb{F}]\} \subset \mathbb{C}[\mathbb{F}]^*$$
,
 $c_0(\mathbb{F}) = \{(\mathrm{id} \otimes \omega)(W_{\mathbb{G}}) \mid \omega \in B(\ell^2 \mathbb{F})_*\}^- \subset B(\ell^2(\mathbb{F})).$

These are non-unital (C^* -) algebras equipped with coproducts

$$\Delta: c_c(\mathbb{F}) \to \mathscr{M}(c_c(\mathbb{F}) \odot c_c(\mathbb{F})), \Delta: c_0(\mathbb{F}) \to \mathcal{M}(c_0(\mathbb{F}) \otimes c_0(\mathbb{F})).$$

As an algebra $c_c(\mathbb{F}) \simeq \bigoplus_{\alpha \in I} L(H_\alpha)$ over $I = \operatorname{Irr} \operatorname{Rep} \mathbb{G}$. Then the *multiplicative unitary* $W_{\mathbb{G}}$ identifies with $\bigoplus_{\alpha \in I} v_{\alpha}$.

Locally compact quantum groups

Definition (Kustermans, Vaes)

A reduced C*-algebraic quantum group is given by a C*-algebra $A = C^{r}(\mathbb{G})$ and a non-deg. *-hom $\Delta : A \to M(A \otimes A)$ such that

- $(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta$,
- $\overline{\mathrm{Span}}(\mathrm{id}\otimes A^*)\Delta(A) = A = \overline{\mathrm{Span}}(A^*\otimes\mathrm{id})\Delta(A),$
- there exist faithful KMS weights φ , ψ on A s.t. $\forall \omega \in A_+^*, a \in \mathscr{M}_{\varphi|\psi}^+$ $\varphi((\mathrm{id} \otimes \omega)\Delta(a)) = \omega(1)\varphi(a)$ and $\psi((\omega \otimes \mathrm{id})\Delta(a)) = \omega(1)\psi(a)$.
- Commutative case: locally compact groups
- Pontrjagin duality $\mathbb{G} \to \hat{\mathbb{G}} \to \mathbb{G}$
- Includes compact and discrete quantum groups
- But also double crossed products G ⋈ H, including the Drinfeld double D(G) = G ⋈ Ĝ of a compact quantum group

Outline

1 Various frameworks

- Compact quantum groups
- Representation categories
- Discrete quantum groups
- Locally compact quantum groups

Many examples

- SU_q(2) and q-deformations
- Orthogonal free quantum groups
- More examples

An analytical property: C*-simplicity

- Properties of interest
- The classical case
- Quantum boundary actions
- Quantum Gromov boundaries

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let G be a connected, simply connected compact Lie group. $\rightarrow \mathfrak{G} = \operatorname{Lie}(G)_{\mathbb{C}}, \mathscr{U}(\mathfrak{G})$ its enveloping algebra, $\rightarrow \operatorname{Drinfel'd-Jimbo's} \mathscr{U}_q(\mathfrak{G})$: deformation of Serre's presentation of $\mathscr{U}(\mathfrak{G})$.

The compact real form/*-structure is deformed as well. $\mathscr{U}_q(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in]0,1[:$

$$\mathscr{U}_q(\mathfrak{G})$$

 $\mathscr{U}_q(\mathfrak{G})$
 $\mathscr{O}(G_q), C^r(G_q)$

(人間) トイヨト イヨト ニヨ

Let G be a connected, simply connected compact Lie group.
→ 𝔅 = Lie(G)_ℂ, 𝔐(𝔅) its enveloping algebra,
→ Drinfel'd–Jimbo's 𝔐_q(𝔅): deformation of Serre's presentation of 𝔐(𝔅).

The compact real form/*-structure is deformed as well. $\mathscr{U}_q(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in]0,1[:$

$$\mathcal{U}_{q}(\mathfrak{G})$$

$$(dual'')$$

$$\mathcal{O}(G_{q}), C^{r}(G_{q})$$

$$\mathcal{O}(G_{q}), C^{r}(G_{q})$$

$$\mathcal{O}(G_{q}), C^{r}(G_{q})$$

Let G be a connected, simply connected compact Lie group.
→ 𝔅 = Lie(G)_ℂ, 𝔐(𝔅) its enveloping algebra,
→ Drinfel'd–Jimbo's 𝔐_q(𝔅): deformation of Serre's presentation of 𝔐(𝔅).

The compact real form/*-structure is deformed as well. $\mathscr{U}_q(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in]0,1[:$

Let G be a connected, simply connected compact Lie group.
→ 𝔅 = Lie(G)_ℂ, 𝔐(𝔅) its enveloping algebra,
→ Drinfel'd–Jimbo's 𝔐_q(𝔅): deformation of Serre's presentation of 𝔐(𝔅).

The compact real form/*-structure is deformed as well. $\mathscr{U}_q(\mathfrak{G})$ is a Hopf *-algebra, but not of the kind described earlier.

Associated compact and discrete quantum groups, for $q \in]0,1[:$

→ also "complex semi-simple quantum groups" $D(G_q) = G_q \bowtie \hat{G}_q$.

The case of $SU_q(2)$

• **Drinfel'd–Jimbo:** $\mathcal{U}_q(\mathfrak{sl}(2))$ is the universal algebra generated by elements *E*, *F*, *K*, K^{-1} and the relations $KK^{-1} = K^{-1}K = 1$ and

$$\begin{aligned} \mathsf{K} E &= q^2 \mathsf{E} \mathsf{K}, \quad \mathsf{K} F = q^{-2} \mathsf{F} \mathsf{K}, \quad [\mathsf{E}, \mathsf{F}] = \frac{\mathsf{K} - \mathsf{K}^{-1}}{q - q^{-1}} \\ \text{Coproduct: } \Delta(\mathsf{E}) &= \mathsf{E} \otimes \mathsf{K} + 1 \otimes \mathsf{E}, \ \Delta(\mathsf{F}) = \mathsf{F} \otimes 1 + \mathsf{K}^{-1} \otimes \mathsf{F}, \\ \mathscr{U}_q(\mathfrak{su}(2)) &= \mathscr{U}_q(\mathfrak{sl}(2)) \text{ with } \mathsf{E}^* = \mathsf{F} \mathsf{K}, \ \mathsf{F}^* = \mathsf{K}^{-1} \mathsf{E}, \ \mathsf{K}^* = \mathsf{K}. \end{aligned}$$

• Woronowicz: $C(SU_q(2)) =$ universal C*-algebra generated by α , γ and

$$\begin{aligned} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma\\ &\alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + q^2\gamma^*\gamma = 1. \end{aligned} \tag{1}$$

Coproduct Δ : such that $u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha \end{pmatrix}$ is a corepresentation.

イロト 不得 トイラト イラト 一日

The case of $SU_q(2)$

• Woronowicz: $C(SU_q(2)) =$ universal C*-algebra generated by α , γ and

$$\begin{aligned} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma\\ &\alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + q^2\gamma^*\gamma = 1. \end{aligned} \tag{1}$$

Coproduct Δ : such that $u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha \end{pmatrix}$ is a corepresentation. In fact (1) holds **iff** u is unitary and $u \otimes u$ fixes

$$\xi_q = e_1 \otimes e_2 - q e_2 \otimes e_1.$$

- In other words, $\operatorname{Rep}(SU_q(2))$ is the universal tensor C^* -category
 - generated by one object and one morphism $t = \cap : 1 \to \bullet \otimes \bullet$
 - subject to $t^*t = \bigcirc = q + q^{-1}$ and the duality equations.

This is the **Temperley-Lieb** category TL_q^- . The fiber functor is given by $F_q(\bullet) = \mathbb{C}^2$, $F_q(\cap) = \xi_q/\sqrt{|q|}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Orthogonal free quantum groups

The Temperley-Lieb categories TL_q^{\pm} have higher-dimensional fiber functors.

Fix $N \in \mathbb{N}$, $N \geq 2$ and $Q \in GL_N(\mathbb{C})$ such that $Q\bar{Q} = \pm I_n$. Write $\operatorname{Tr}(Q^*Q) = q + q^{-1}$ with $q \in]0, 1]$. Then there is a unique fiber functor $F_Q : TL_q^{\pm} \to \operatorname{Hilb}$ given by

$$\mathsf{F}_Q(ullet)=\mathbb{C}^N, \quad \mathsf{F}_Q(\cap)=\sum_i \mathsf{e}_i\otimes Q\mathsf{e}_i.$$

Moreover all fiber functors on TL_q^{\pm} are of this form, up to isomorphism.

Definition

The compact quantum group associated with F_Q is denoted O_Q^+ , and its discrete dual is denoted $\mathbb{F}O_Q$. For $Q = I_N$ they are denoted O_N^+ , $\mathbb{F}O_N$.

Roland Vergnioux (Univ. Normandy)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Orthogonal free quantum groups

Fix $N \in \mathbb{N}$, $N \geq 2$ and $Q \in GL_N(\mathbb{C})$ such that $Q\bar{Q} = \pm I_n$.

Proposition (Wang, Van Daele, Banica)

The algebras $A = C^u(O_{\Omega}^+)$, $\mathcal{O}(O_{\Omega}^+)$ are presented by the entries of $u = (u_{ii}) \in M_N(A)$ with the relations: $uu^* = 1 = u^*u$ and $Q\bar{u}Q^{-1} = u$, where $\bar{u} = (u_{ii}^*)$.

These are exactly the CQG having the same fusion ring as SU(2). For N = 2: $\{O_{O}^{+} \mid N = 2\} = \{SU_{\mp q}(2) \mid 0 < q \le 1\}.$

We call O_{Ω}^{+} the universal orthogonal quantum groups, $\mathbb{F}O_{O}$ the orthogonal free quantum groups. We have $C^{u}(O_{N}^{+})/\langle [x, y] \rangle \simeq C(O_{N})$, $C^*(\mathbb{F}O_N)/\langle u_{ii}, i \neq j \rangle \simeq C^*_u(FO_N), FO_N = (\mathbb{Z}/2)^{*N}.$

Open question: does $\operatorname{Rep}(SU_q(3))$ have higher-dim. fiber functors?

- 31

10/16

More examples

Universal unitary quantum groups

For $N\geq 2$, $Q\in GL_N(\mathbb{C})$, define a C^* -algebra by generators and relations:

$$C^u(U_Q^+) = C^*_u(\mathbb{F}U_Q) = \langle u_{ij} \mid u = (u_{ij}) \text{ and } Q \overline{u} Q^{-1} \text{ unitary} \rangle.$$

It is a Woronowicz C^* -algebra for the coproduct s.t. $(\operatorname{id} \otimes \Delta)(u) = u_{12}u_{13}$. The fusion ring is non-commutative $(v \otimes w \neq w \otimes v)$, isomorphic to the ring of the free monoid on two letters. [Banica]

Partition/easy quantum groups

A tensor C^* -category of partitions \mathscr{P} has objects in \mathbb{N} and $\operatorname{Hom}(m, n)$ spanned by partitions of m + n points, with the "usual operations". If $\bigcirc = N \in \mathbb{N}^*$, there is a functor $T : \mathscr{P} \to \operatorname{Hilb}$ with $T(\bullet) = \mathbb{C}^N$ (not always faithful) and an associated CQG $\mathbb{G}_N(\mathscr{P})$. For instance :

•
$$\mathscr{P} = \{ \text{non crossing pair partitions} \} \rightarrow \mathbb{G}_N(\mathscr{P}) = O_N^+.$$

•
$$\mathscr{P} = \{ \text{all partitions} \} \twoheadrightarrow \mathbb{G}_N(\mathscr{P}) = S_N,$$

•
$$\mathscr{P} = \{\text{non crossing partitions}\} \rightarrow \mathbb{G}_N(\mathscr{P}) = S_N^+$$
.

Outline

1 Various frameworks

- Compact quantum groups
- Representation categories
- Discrete quantum groups
- Locally compact quantum groups
- Many examples
 - *SU*_q(2) and *q*-deformations
 - Orthogonal free quantum groups
 - More examples

3 An analytical property: C*-simplicity

- Properties of interest
- The classical case
- Quantum boundary actions
- Quantum Gromov boundaries

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What kind of properties?

Fix $A = C^r(\mathbb{G}) = C^*_r(\mathbb{F})$.

Is A the only Woronowicz C*-algebra associated with G?
 Equivalent to amenability of Γ.

 $\mathbb{G} = G_q$: yes. O_Q^+ , U_q^+ : no if $N \ge 3$. S_N^+ : no if $N \ge 5$.

- Weaker approximation properties: Haagerup approximation property, weak amenability, exactness... True for F_N , $\mathbb{F}O_Q$, $\mathbb{F}U_Q$... Non-approximation properties: Property (T). True for $D(SU_q(3))$.
- Classification \rightarrow K-theory \rightarrow Baum-Connes. $\mathcal{K}_0(C^r(S_N^+)) \simeq \mathbb{Z}^{N^2 - 2N + 2}$; $\mathcal{K}_0(C^r(O_N^+)) \simeq \mathbb{Z} \simeq \mathcal{K}_1(C^r(O_N^+))$. **Open question:** $C^r(O_N^+) \simeq C^r(O_M^+)$ for $N \neq M$?
- Structure of C^{*}_r(ℂ): simplicity? traces? maximal abelian subalgebras? (Also in the von Neumann context.)

Slogan: $C(O_N^+) = C_r^*(\mathbb{F}O_N)$, $C_r^*(\mathbb{F}U_N)$ are very similar to $C_r^*(F_N)$!

Classical boundary actions

Simplicity of A: no proper *closed* bilateral ideals $I \subset A$. Note: $\mathbb{C}[F_N]$ is not (alg.) simple, but $C_r^*(F_N)$ is simple [Powers 1975].

Trace on A: positive functional $\varphi \in A_+^*$ such that $\varphi(ab) = \varphi(ba)$. Note: $C_r^*(\Gamma)$ has a canonical trace $h(\sum x_g g) = x_e$.

Theorem (Breuillard, Kalantar, Kennedy, Ozawa 2017)

- $C_r^*(\Gamma)$ is simple iff Γ admits an essentially free boundary action.
- $C_r^*(\Gamma)$ has a unique trace iff Γ admits a faithful boundary action.

A boundary action is an action $\Gamma \curvearrowright X$ on a compact space X which is:

• minimal: $\forall x, y \in X \quad \exists g_n \in \Gamma \quad \lim g_n \cdot x = y$,

• strongly proximal: $\forall \mu, \nu \in \operatorname{Prob}(X) \quad \exists g_n \in \Gamma \quad \lim g_n \cdot \mu = \lim g_n \cdot \nu.$ Equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad \overline{\Gamma \cdot \nu} \supset X.$ Example: Gromov boundary of F_N .

Quantum boundary actions

Action of a DQG \mathbb{F} on a C^* -algebra A: given by $\alpha : A \to M(c_0(\mathbb{F}) \otimes A)$. A unital map $T : A \to B$ between C^* -algebras is

- completely positive (UCP) if $(T \otimes id)(M_n(A)_+) \subset M_n(B)_+$ for all n,
- completely isometric (UCI) if $T \otimes id$ is isometric on $M_n(A)$ for all n.

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital \mathbb{T} - C^* -algebra A is a \mathbb{T} -boundary if all UCP \mathbb{T} -equivariant maps $T : A \to B$ are automatically UCI.

In other words, the extension $\mathbb{C} \hookrightarrow A$ is an "essential extension" in the category of unital \mathbb{F} - C^* -algebras with UCP \mathbb{F} -maps as morphisms and UCI \mathbb{F} -maps as embeddings.

[Habbestad, Hataishi, Neshveyev 2022] constructs for any rigid tensor C^* -category \mathscr{C} the universal \mathscr{C} -boundary (which is a \mathscr{C} -tensor category) which corresponds to the universal $D(\Gamma)$ -boundary of the Drinfeld double.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Quantum boundary actions

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital \mathbb{T} - C^* -algebra A is a \mathbb{T} -boundary if all UCP \mathbb{T} -equivariant maps $T : A \to B$ are automatically UCI.

The action $\mathbb{F} \curvearrowright^{\alpha} A$ is *faithful* if $(c_0(\mathbb{F})^* \otimes id)\alpha(A)$ generates $M(c_0(\mathbb{F}))$.

Theorem (KKSV 2020)

Assume that \mathbb{F} acts faithfully on some \mathbb{F} -boundary A. Then:

- if \mathbb{F} is unimodular, $C_r^*(\mathbb{F})$ has a unique trace ;
- else $C_r^*(\mathbb{F})$ has no KMS state wrt the scaling group.

Theorem (Anderson-Sackaney, Khosravi 2024)

 \mathbb{F} unimodular and $C_r^*(\mathbb{F})$ unique trace \Rightarrow there exists a faithful \mathbb{F} -boundary.

Quantum boundary actions

Definition (Kasprzak, Kalantar, Skalski, V.)

A unital \mathbb{T} - C^* -algebra A is a \mathbb{T} -boundary if all UCP \mathbb{T} -equivariant maps $T : A \to B$ are automatically UCI.

Note: for $\Gamma \curvearrowright X$ compact minimal, essentially free \Leftrightarrow strongly faithful: $\forall g_1, \dots, g_n \in \Gamma \setminus \{1\} \quad \exists x \in X \quad \forall i \quad g_i \cdot x \neq x.$

Definition (Anderson-Sackaney, V.)

 $\mathbb{T} \curvearrowright A$ is strongly C^* -faithful if for every projection $p \in Z(c_c(\mathbb{T}))$ with $\epsilon(p) = 0$ and every $\eta > 0$ there exists $k \in \mathbb{N}^*$ and $b \in (A \otimes M_k(\mathbb{C}))_+$ such that $\|b\| = 1$ and $\|(p \otimes b)(\alpha \otimes \operatorname{id})(b)\| \leq \eta$.

Theorem (ASV 2024)

If \mathbb{F} admits a strongly C^* -faithful boundary action, then $C^*_r(\mathbb{F})$ is simple.

Quantum Gromov boundaries

Recall that O_Q^+ has the same fusion rules as SU(2). In particular $c_c(\mathbb{F}O_Q) \simeq \bigoplus_{n \in \mathbb{N}} L(H_n)$ with $H_{n+1} \subset H_n \otimes H_1$. By analogy with the free group case $c_c(F_N) \simeq \bigoplus_{n \in \mathbb{N}} C(S_n)$ one puts

$$C(\partial \mathbb{F}O_Q) = \varinjlim L(H_n).$$

It has a natural structure of a unital $\mathbb{F}O_Q$ - C^* -algebra [Vaes-V. 2007]. There is a similar construction for $\mathbb{F}U_Q$ [Vaes-Vander Vennet].

Theorem (ASV 2024)

For $N \geq 3$, $C(\partial \mathbb{F}U_Q)$ is an $\mathbb{F}U_Q$ -boundary and it is strongly C^* -faithful.

[Habbestad, Hataishi, Neshveyev 2022] shows the weaker result that $C(\partial \mathbb{F}U_Q)$ is a $D(\mathbb{F}U_Q)$ -boundary. Simplicity of $C_r^*(\mathbb{F}U_Q)$ is already known [Banica 1997].

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Quantum Gromov boundaries

Recall that O_Q^+ has the same fusion rules as SU(2). In particular $c_c(\mathbb{F}O_Q) \simeq \bigoplus_{n \in \mathbb{N}} L(H_n)$ with $H_{n+1} \subset H_n \otimes H_1$. By analogy with the free group case $c_c(F_N) \simeq \bigoplus_{n \in \mathbb{N}} C(S_n)$ one puts

$$C(\partial \mathbb{F}O_Q) = \varinjlim L(H_n).$$

It has a natural structure of a unital $\mathbb{F}O_Q$ - C^* -algebra [Vaes-V. 2007]. There is a similar construction for $\mathbb{F}U_Q$ [Vaes-Vander Vennet].

Theorem (KKSV 2020)

Assume $N \ge 3$. Then $C(\partial \mathbb{F}O_Q)$ is an $\mathbb{F}O_Q$ -boundary and it is faithful.

N = 2: the dual of $SU_q(2)$ is amenable \Rightarrow the only $\mathbb{F}O_Q$ -boundary is \mathbb{C} . In the unimodular case, uniqueness of trace was already known. Simplicity is known only with restrictions on Q [Vaes-V.]. **Open question:** is $C(\partial \mathbb{F}O_Q)$ strongly C^* -faithful?