Free entropy dimension and the orthogonal free quantum groups

Roland Vergnioux joint work with Michael Brannan

University of Normandy (France)

Oberwolfach, May 10, 2018

Outline

- Introduction
 - Orthogonal free quantum groups
 - The von Neumann algebra $\mathscr{L}(\mathbb{F}O_n)$
- 2 Free entropy dimension
 - Free entropy
 - 1-boundedness
- 3 The case of $\mathbb{F}O_n$
 - Applying the "rank theorem"
 - The quantum Cayley graph

Orthogonal free quantum groups

Wang's algebra defined by generators and relations:

$$A_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u_{ij}^*, \ (u_{ij}) \ \text{unitary} \rangle.$$

It comes with a natural "group-like" structure:

$$\Delta: A_o(n) \to A_o(n) \otimes A_o(n), \ u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}.$$

Why "group-like"?

We have $A_o(n) \twoheadrightarrow C(O_n)$, $u_{ij} \mapsto (g \mapsto g_{ij})$ and Δ induces

$$\Delta: C(O_n) \to C(O_n) \otimes C(O_n), \ \Delta(f)(g,h) = f(gh).$$

One can recover the compact group O_n from $(C(O_n), \Delta)$.

We denote $A_o(n) = C(O_n^+)$, where O_n^+ is a **compact quantum group**.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Orthogonal free quantum groups

Wang's algebra defined by generators and relations:

$$\mathcal{A}_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u_{ij}^*, \ (u_{ij}) \ \text{unitary} \rangle.$$

It comes with a natural "group-like" structure:

$$\Delta: A_o(n) \to A_o(n) \otimes A_o(n), \ u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}.$$

Why "group-like"?

We have $A_o(n) \twoheadrightarrow C(O_n)$, $u_{ij} \mapsto (g \mapsto g_{ij})$ and Δ induces

$$\Delta: C(O_n) \to C(O_n \times O_n), \ \Delta(f)(g,h) = f(gh).$$

One can recover the compact group O_n from $(C(O_n), \Delta)$.

We denote $A_o(n) = C(O_n^+)$, where O_n^+ is a **compact quantum group**.

◆ロト ◆卸 > ◆ 重 > ◆ 重 > り Q (*)

Orthogonal free quantum groups

Wang's algebra defined by generators and relations:

$$A_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u_{ij}^*, \ (u_{ij}) \ \text{unitary} \rangle.$$

It comes with a natural "group-like" structure:

$$\Delta: A_o(n) \to A_o(n) \otimes A_o(n), \ u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}.$$

Why "group-like"?

We have
$$A_o(n) \twoheadrightarrow C_n = C^*((\mathbb{Z}/2\mathbb{Z})^{*n}), u_{ij} \mapsto \delta_{ij}b_i$$
 and Δ induces

$$\Delta: C_n \to C_n \otimes C_n$$
, $g \mapsto g \otimes g$ for $g \in C^*((\mathbb{Z}/2\mathbb{Z})^{*n})$.

One can recover
$$(\mathbb{Z}/2\mathbb{Z})^{*n}$$
 as $\{u \in \mathscr{U}(C_n) \mid \Delta(u) = u \otimes u\}$.

We denote $A_o(n) = C^*(\mathbb{F}O_n)$, where $\mathbb{F}O_n$ is a **discrete quantum group**.

4D > 4A > 4B > 4B > B 999

Discrete/Compact quantum groups

A Woronowicz C^* -algebra is a unital C^* -algebra A with *-homomorphism $\Delta: A \to A \otimes A$ (coproduct) such that

- $\bullet \ (\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta,$
- $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$.

Notation : $A = C^*(\Gamma) = C(\mathbb{G})$.

General theory: Haar state, Peter-Weyl, Tannaka-Krein...

Theorem (Woronowicz)

There exists a unique state $h: C^*(\mathbb{\Gamma}) \to \mathbb{C}$ such that $(h \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes h)\Delta = 1 \otimes h$.

- → regular representation $\lambda : C^*(\mathbb{F}) \to B(H)$,
- → reduced Woronowicz C^* -algebra $C^*_{red}(\Gamma) = \lambda(C^*(\Gamma))$,
- ightharpoonup von Neumann algebra $\mathscr{L}(\mathbb{F}) = C^*_{\mathrm{red}}(\mathbb{F})'' \subset B(H)$.

Known results about $\mathscr{L}(\mathbb{F}O_n)$

We restrict to the case $n \ge 3$.

Known results:

- $\mathscr{L}(\mathbb{F}O_n)$ is not injective [Banica 1997]
- it is a full and solid II_1 factor [Vaes-V. 2007]
- it has the HAP and the CBAP [Brannan 2012, Freslon 2013]
- it is strongly solid [Isono 2015, Fima-V. 2015]
- it is Connes embeddable [Brannan-Collins-V. 2016]

Question: is $\mathscr{L}(\mathbb{F}O_n)$ isomorphic to a free group factor $\mathscr{L}(F_m)$?

Theorem (V. 2012, Kyed-Raum-Vaes-Valvekens 2017)

We have $\beta_1^{(2)}(\mathbb{F}O_n)=0$. Hence $\delta_0(u)=1$.

Free groups : $\beta_1^{(2)}(F_m) = m - 1$, $\delta_0(u) = m$. But : vN invariants ?...

Outline

- Introduction
 - Orthogonal free quantum groups
 - ullet The von Neumann algebra $\mathscr{L}(\mathbb{F}O_n)$
- Pree entropy dimension
 - Free entropy
 - 1-boundedness
- 3 The case of $\mathbb{F}O_n$
 - Applying the "rank theorem"
 - The quantum Cayley graph

Free entropy

 (M, τ) : finite von Neumann algebra with fixed trace τ . $H = L^2(M, \tau)$. Fix a tuple of self-adjoint elements $x = (x_1, \dots, x_m) \in M^m$.

 $\chi(x)$: microstates free entropy / $\chi^*(x)$: non microstates free entropy.

Free entropy dimension. [Voiculescu]

Assume M contains a free family $s = (s_1, \ldots, s_m)$ of (0, 1)-semicircular elements, also free from x. One defines:

$$\delta_0(x) = m - \liminf_{\delta \to 0} \chi(x + \delta s : s) / \ln \delta$$

$$\delta^*(x) = m - \liminf_{\delta \to 0} \chi^*(x + \delta s) / \ln \delta$$

 $\delta_0(x)$ only depends on the algebra generated by x. It is not known whether it only depends on the von Neumann algebra.

We have the following deep result:

Theorem (Biane-Capitaine-Guionnet 2003)

We have $\chi(x) \leq \chi^*(x)$, hence $\delta_0(x) \leq \delta^*(x)$.

α -boundedness

Recall that $\delta^*(x) = m - \liminf_{\delta \to 0} \chi^*(x + \delta s) / \ln \delta$.

Hence
$$\delta^*(x) \le \alpha$$
 iff $\chi^*(x + \delta s) \le (\alpha - m)|\ln \delta| + o(\ln \delta)$ as $\delta \to 0$.

One says that x is α -bounded for δ^* if

$$\chi^*(x+\delta s) \le (\alpha-m)|\ln \delta| + K$$

for small δ and some constant K.

There is a similar notion of α -boundedness for δ_0 [Jung].

Theorem (Jung 2007)

If x is 1-bounded for δ_0 and $\chi(x_i) > -\infty$ for at least one i, then any tuple y of generators of $W^*(x)$ is 1-bounded for δ_0 (hence $\delta_0(y) \leq 1$).

In particular if M is generated by a 1-bounded tuple of generators, it is not isomorphic to any free group factor.

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables $\mathbb{C}\langle X\rangle=\mathbb{C}\langle X_1,\ldots,X_m\rangle$. There are unique derivations

$$\delta_i: \mathbb{C}\langle X \rangle \to \mathbb{C}\langle X \rangle \otimes \mathbb{C}\langle X \rangle$$

such that $\delta_i(X_j) = \delta_{ij}(1 \otimes 1)$, with the bimodule structure $P \cdot (Q \otimes R) \cdot S = PQ \otimes RS$. One has e.g.

$$\partial_1(X_2X_1X_3^2X_1X_4) = X_2 \otimes X_3^2X_1X_4 + X_2X_1X_3^2 \otimes X_4.$$

Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables $\mathbb{C}\langle X \rangle = \mathbb{C}\langle X_1, \ldots, X_m \rangle$. There are unique derivations δ_i such that $\delta_i(X_j) = \delta_{ij}(1 \otimes 1)$. For $P = (P_1, \ldots, P_l) \in \mathbb{C}\langle X \rangle^l$, put $\partial P = (\partial_i P_i) \in \mathbb{C}\langle X \rangle \otimes \mathbb{C}\langle X \rangle \otimes B(\mathbb{C}^m, \mathbb{C}^l)$.

Denote $H = L^2(M, \tau)$. Evaluating at X = x one obtains an operator $\partial P(x) \in B(H \otimes H \otimes \mathbb{C}^m, H \otimes H \otimes \mathbb{C}^l)$,

which commutes to the right action $(\zeta \otimes \xi) \cdot (x \otimes y) = \zeta x \otimes y \xi$ of $M \otimes M^{\circ}$ on $H \otimes H$. One considers the Murray-von Neumann dimension:

$$\operatorname{rank} \partial P(x) = \dim_{M \otimes M^{\circ}} \overline{\operatorname{Im}} \ \partial P(x).$$

Theorem (Jung 2016, Shlyakhtenko 2016)

Assume that x satisfies the identities P(x) = 0 and that $\partial P(x)$ is of determinant class. Then x is α -bounded for δ_0 and δ^* , with $\alpha = m - \operatorname{rank} \partial P(x)$.

Outline

- Introduction
 - Orthogonal free quantum groups
 - The von Neumann algebra $\mathcal{L}(\mathbb{F}O_n)$
- 2 Free entropy dimension
 - Free entropy
 - 1-boundedness
- 3 The case of $\mathbb{F}O_n$
 - Applying the "rank theorem"
 - The quantum Cayley graph

Relations in $\mathbb{F}O_n$

We take $m = n^2$, $X = (X_{ij})_{ij} \in \mathbb{C}\langle X_{ij} \rangle \otimes M_n(\mathbb{C})$, $x = u = (u_{ij})_{ij}$. We consider the $I = 2n^2$ canonical relations:

$$P = (P_1, P_2) = (X^tX - 1, XX^t - 1) \in \mathbb{C}\langle X \rangle \otimes M_n(\mathbb{C})^{\oplus 2}.$$

Following [Shlyakhtenko 2016] it is easy to prove that:

Proposition

We have
$$n^2 - \operatorname{rank} \partial P(u) = \beta_1^{(2)}(\mathbb{F}O_n) - \beta_0^{(2)}(\mathbb{F}O_n) + 1 = 1$$
.

Hence if $\partial P(u)$ is of determinant class, Jung–Shlyakhtenko's result allows to conclude that u is 1-bounded.

In the case of a discrete group Γ , this would follow from Lück's determinant conjecture, which holds e.g. if Γ is sofic. In the quantum case, there is no such tool (yet?) to prove the determinant conjecture...

Computation of $\partial P(u)$

Determinant class: $(h \otimes h \otimes \operatorname{Tr})(\ln_+(\partial P(u)^*\partial P(u))) > -\infty$.

Identify $M_n(\mathbb{C}) \simeq p_1 H = \operatorname{Span}\{u_{ij}\xi_0\} \subset H$.

Then $u \in C^*_{\mathrm{red}}(\mathbb{F}O_n) \otimes M_n(\mathbb{C})$ acts by left mult. on $H \otimes p_1H$.

If $S: H \to H$ is the antipode, we have in $B(H \otimes H \otimes p_1 H)$:

$$\partial P_1(u) = (1 \otimes S \otimes S)u_{23}(1 \otimes S \otimes 1) + u_{13}^* \partial P_2(u) = (1 \otimes S \otimes S)u_{23}^*(1 \otimes S \otimes S) + u_{13}(1 \otimes 1 \otimes S)$$

Proposition

We have $\partial P_1(u)^*\partial P_1(u) = \partial P_2(u)^*\partial P_2(u)$ and it is unitarily conjugated to $(2+2\operatorname{Re}\Theta)\otimes 1\in B(H\otimes p_1H\otimes H)$, where $\Theta=(S\otimes 1)u(S\otimes S)\in B(H\otimes p_1H)$.

Fact: Θ is the reversing operator of the quantum Cayley graph of $\mathbb{F}O_n!$

4 D > 4 P > 4 E > 4 E > E 900

Roland Vergnioux (Univ. Normandy)

Free entropy dimension

Oberwolfach, 10/5/2018

Decomposing the quantum Cayley graph

Classical case

For $\Lambda=\Lambda^{-1}\subset \Gamma,$ the Cayley graph of $\left(\Gamma,\Lambda\right)$ is given by

$$X^{(0)} = \Gamma, X^{(1)} = \Gamma \times \Lambda,$$

 $\partial: X^{(1)} \to X^{(0)} \times X^{(0)}, (g, h) \mapsto (g, gh),$
 $\theta: X^{(1)} \to X^{(1)}, (g, h) \mapsto (gh, h^{-1}).$

Consider $H = \ell^2(\Gamma)$, $p_1 H = \ell^2(\Lambda)$, $u = \operatorname{diag}(\lambda(g))_{g \in \Lambda}$, $S(g) = g^{-1}$. Then:

$$\Theta(g\otimes h)=(S\otimes 1)u(S\otimes S)(g\otimes h)=gh\otimes h^{-1}.$$

We have $\Theta^2 = 1$, $H \otimes p_1 H = \text{Ker}(\Theta - 1) \oplus \text{Ker}(\Theta + 1)$.

Decomposing the quantum Cayley graph

Classical case

We have $\Theta^2 = 1$, $H \otimes p_1 H = \text{Ker}(\Theta - 1) \oplus \text{Ker}(\Theta + 1)$.

Quantum case

We have $\Theta^2 \neq 1$, $\operatorname{Ker}(\Theta - 1) \oplus \operatorname{Ker}(\Theta + 1) \subsetneq H \otimes p_1 H$. The description of $Ker(\Theta \pm 1)$ was an essential tool in the proof of $\beta_1^{(2)}(\mathbb{F}O_n) = 0$.

Theorem

On $\operatorname{Ker}(\Theta-1)^{\perp} \cap \operatorname{Ker}(\Theta+1)^{\perp}$, $\operatorname{Re}(\Theta) \simeq \bigoplus \operatorname{Re}(r_{\alpha})$ is an infinite direct sum of real parts of weighted right shifts r_{α} .

Lemma

For any right shift r with weights in [0,1], $2+2\operatorname{Re} r$ is of determinant class with respect to the specific state coming from $h \otimes Tr$.

イロト イ御ト イラト イラト 一多一

Conclusion

Finally one can apply Jung-Shlyakhtenko's result:

Corollary

The generating matrix u is 1-bounded in $\mathcal{L}(\mathbb{F}O_n)$. $\mathcal{L}(\mathbb{F}O_n)$ is not isomorphic to a free group factor.

Next questions...

- Is there a group Γ such that $\mathscr{L}(\mathbb{F}O_n) \simeq \mathscr{L}(\Gamma)$?
- What about $\mathcal{L}(\mathbb{F}O(Q))$ the type III case?
- What about $\mathscr{L}(\mathbb{F}U_n)$? Recall that $\mathscr{L}(\mathbb{F}U_2) \simeq \mathscr{L}(F_2)$.