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Introduction The main result

The main result

Let n > 2 and Q € GL,(C). Consider the following unital C*-algebras,
generated by n? elements uj;; forming a matrix u, and the relations

Au(Q) = (uj | uand QEQ™" unitaries),
Ao(@) = (ujj | u unitary and u = QuQ™!).

They are interpreted as maximal C*-algebras of discrete quantum groups:
Au(Q) = C*(FU(Q)), As(Q) = C*(FO(Q)) [Wang, Van Daele 1995].

Theorem
The discrete quantum group FU(Q) satisfies the strong Baum-Connes
property (“y =1"). We have

Ko(Au(Q)) = Z[1] and Ki(Au(Q)) = Z[u] & Z[u].
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Strategy of proof

o If QQ € Cl, we have FU(Q) — Z + FO(Q) [Banica 1997].

e FO(Q) satisfies strong Baum-Connes [Voigt 2009].

@ Prop.: stability of strong BC under passage to “divisible” subgroups.
@ Theorem: stability of strong BC under free products.

o Case QQ ¢ Cl,: monoidal equivalence [Bichon-De Rijdt-Vaes 2006].
@ Use strong BC to compute the K-groups.

Other possible approach: Haagerup's Property [Brannan 2011] 7

Result on free products:

o classical case: for groups acting on trees
[Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]

@ quantum case: uses the quantum Bass-Serre tree and the associated
Julg-Valette element [V. 2004]
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Strategy of proof

Result on free products:

@ classical case: for groups acting on trees
[Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]

@ quantum case: uses the quantum Bass-Serre tree and the associated
Julg-Valette element [V. 2004]

Novelties:

e (*-algebra & associated to the quantum Bass-Serre tree
[Julg-Valette 1989] and [Kasparov-Skandalis 1991] - Dirac element

@ Invertibility of the associated Dirac element without “rotation trick”

@ Actions of Drinfel'd double D(FU(Q)) in order to be able to take
tensor products
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Quantum groups and subgroups Definitions
Discrete quantum groups

Let I' be a discrete group and consider the C*-algebra Co(I").
The product of T is reflected on Cy(I") by a coproduct :

A Go(M) = M(Gy(T)@Cy(T))
f — ((g,h) — f(gh)).

A discrete quantum group I can be given by:
@ a C*-algebra Co(I") with coproduct A : Go([') = M(Go(IN)@Co()),
@ a C*-algebra C*(I') with coproduct,

@ a category of corepresentations Corep [ (semisimple, monoidal : ®)

Co(I"), C*(T) are both represented on a GNS space £2(I).
In general Go([M) is a sum of matrix algebras:

Co(I) = p{L(H,) | r € Irr Corep['}.
The interesting algebra is C*(I")!
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Quantum groups and subgroups Definitions

Examples

Classical case: ' =T “real” discrete group <= commutative Co(Il).
Then Irr Corep ' = I with ® = product of I

Compact case: [ = G, G “real’ compact group.
Then Go(IN) = C*(G), C*(I") = C(G), Corepl = Rep G.

Orthogonal free quantum group FO(Q): given by C*(FO(Q)) = As(Q).
If QQ € Cly, Corep[ has the same fusion rules as Rep SU(2).

Unitary free quantum group FU(Q): given by C*(FO(Q)) = Au(Q).
Irr Corep [ is indexed by words on u, T; fusion rules are given by

concatenation + fusion, e.g. u®u ~ vt ® 1.

Free products : C*(Ig * ['1) := C*(Ig) * C*(I'1).
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Quantum groups and subgroups Definitions

Quantum subgroups and quotients

Different ways of specifying A C T
e bisimplifiable sub-Hopf C*-algebra C*(A) C C*(T)
conditional expectation E : C*(I') — C*(A)
o full subcategory Corep A C Corep[,
containing 1, stable under ® and duality [V. 2004]

@ surj. morphism 7 : Go(I') — Co(A) compatible with coproducts
[Vaes 2005] in the locally compact case

Quotient space:
o Cp(l'/AN) ={f € M(G(IN)) | (idem)A(f) = f®1}
with coaction of Co(I")
e (?(I'/N) = GNS construction of g5 0 E : C*(I') — C,
with faithful representation of Cp(I'/A)

o Irr CorepI'/A = Irr Corep [/ ~,
where r ~ s if r C s® t with t € Irr Corep A
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Quantum groups and subgroups Divisible subgroups

Divisible subgroups

A C T is “divisible” if one of the following equiv. conditions is satisfied:
@ There exists a A-equivariant isomorphism Co([) ~ Go(I'/AN)@Co(A).
@ There exists a A-equivariant isomorphism Co([) ~ GCo(A)RCo(A\T).
e For all & € Irr Corep [ /A there exists r = r(a) € « such that
r ® t is irreducible for all t € Trr Corep A.
Examples:
e Every subgroup of I’ =T is divisible.
@ Proposition: Ty C g [y is divisible.
@ Proposition: FU(Q) C Z xFO(Q) is divisible.
e FO(Q)¢ Cc FO(Q) is not divisible.

In the divisible case Co(I'/A) ~ @{L(Hy(a)) | o € Trr Corep T /A}.
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Free products Bass-Serre Tree
The quantum Bass-Serre tree
o, Iy discrete quantum groups: Co(7;), ¢2(T;), C*(T;).

Free product: [ =g x['1 given by C*(I") = C*([p) * C*(["1).
We have “Irr Corep I = Irr Corep [ * Irr Corep I'1" [Wang 1995].

The classical case [ =T
X graph with oriented edges, one edge by pair of adjacent vertices

— set of vertices: X(©) = (T'/[g) L (T/I1)
—+ set of edges: X =T
- target and source maps: 7; : [ — ['/["; canonical surjections

Roland Vergnioux (Université de Caen) | K-theory of the free quantum groups Milano, 2012, Dec. 18

11/ 17



Free products Bass-Serre Tree

The quantum Bass-Serre tree
o, Iy discrete quantum groups: Co(7;), ¢2(T;), C*(T;).

Free product: [ =g x['1 given by C*(I") = C*([p) * C*(["1).
We have “Irr Corep I = Irr Corep [ * Irr Corep I'1" [Wang 1995].

7.)27, % 7./37. = {a, b)
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Free products Bass-Serre Tree

The quantum Bass-Serre tree
o, Iy discrete quantum groups: Co(7;), ¢2(T;), C*(T;).

Free product: [ =g x['1 given by C*(I") = C*([p) * C*(["1).
We have “Irr Corep I = Irr Corep [ * Irr Corep I'1" [Wang 1995].

The general case

X “quantum graph”

- space of vertices: (2(X(0) = 2(T/To) @ ¢3(T/T1),
Co(X©@) = Co(T/To) @ Go(T/T1)

- space of edges: 2(X(V)) = £2(T), Go(X(M)) = Go(IN)

— target and source operators: T; : £2(T") — ¢2([/T;) unbounded
T;f is bounded for all f € C.(T") C K(£3(T)).

The ¢? spaces are endowed with natural actions of D(I),
the operators T; are intertwiners.
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Free products Dirac element
Dirac element

We put £2(X) = 2(X©) @ (2(X(1)) and we consider the affine line

Qo | A | 921

I I E

Kasparov-Skandalis algebra &2 C Gy(E) ® K(£2(X))
Closed subspace generated by Cc([7), Cc(I/T0), Cc(T/T1), To and Ty,
with support conditions over E:

0 C(Q) @ (TiC(l)), Ce(2i) @ (T Ce(I))*,
Ce(€2) @ (Ti C(I))(Ti Ce(T))"

Proposition
The natural action of D(I') on Co(E) ® K(£2(X)) restricts to 2. J
Milano, 2012, Dec. 18 12 / 17



Free products Dirac element

Dirac element

Kasparov-Skandalis algebra &2 C Go(E) @ K (¢?(X))

Proposition
The natural action of D(I') on Co(E) ® K(¢2(X)) restricts to . J

The inclusion ©.2 C £C(E) ® K(£2(X)), composed with Bott
isomorphism and the equivariant Morita equivalence K (¢2(X)) ~m C,
defines the Dirac element D € KKP()(X 2, C).

Proposition
The element D admits a left inverse n € KKP((C, £.2). J

The dual-Dirac element 7 is constructed using &2 and the Julg-Valette
operator F € B(¢2(X)) from [V. 2004], so that n ®s» D = [F] =: 7.
It was already known that v =1 in KK'.
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Baum-Connes conjecture (1)

Category KK' : T-C*-algebras + morphisms KK' (A, B)
It is “triangulated™
Class of “triangles”: diagrams ¥Q —» K — E — Q
isomorphic to cone diagrams ¥B — Cf —A B
Motivation: yield exacts sequences via KK (-, X), K(- x ), ...
Two subcategories:
Tl = {indg(A) | A€ KK}, TGCr = {Ac KK" |resE(A) ~0in KK}.

(TIr): localizing subcategory generated by TIr, i.e. smallest stable under
suspensions, countable direct sums, K-equivalences and taking cones.

Classical case : ' =T torsion-free. [-C*-algebras in TIr are proper, all
proper -C*-algebras are in (TI).
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Baum-Connes conjecture (1)

Category KK : T-C*-algebras 4+ morphisms KK (A, B)
Two subcategories:
Tir = {indg(A) | A€ KK}, TCr={Ae KK |resE(A) ~0in KK}.

(TIr): localizing subcategory generated by TIr, i.e. smallest stable under
suspensions, countable direct sums, K-equivalences and taking cones.

Definition (Meyer-Nest)
Strong Baum-Connes property with respect to T/ : (TI) = KK". J

Implies K-amenability. If I = I without torsion: corresponds to the
existence of a v element with v = 1.
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Stability under free products

Theorem

If T, Ty satisfy the strong Baum-Connes property with respect to Tl,
so doesT =g *0y.

2 is in (TIr) because we have the semi-split extension

0 —hdh — &P — C(AG) — 0
2 2
¥ indf, (C) @ Zindf (C) ind£(C)

and by hypothesis C € KK"i is in (Tlr,).
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B Gontes st (1)
Stability under free products

Theorem

If T, Ty satisfy the strong Baum-Connes property with respect to Tl,
so doesT =g *0y.

Want to prove : D € KKT (L2, C) invertible. Since then : C € (Tir).
DU -structure on &2 = can take tensor products = any Ais in (TIr).

Fact : KKT(indf A, B) ~ KK (A, resk B).
2 € (Tlr) = reduces “right invertibility” of D in KK
to “right invertibility” in KK.
The invertibility in KK follows from a computation: K.(X%) = K,.(C),

using again the extension describing Z.
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Baum-Connes conjecture (2)

Each A € KKT has an “approximation” A — A with A € (TIr), functorial
and unique up to isomorphism, which fits in a triangle

SN—A— AN
with N € TCr [Meyer-Nest].

T-projective resolution of A € KK': complex
e — G — G —G—A—0
with C; directs summands of elements of T/, and such that
< — KK(X, G1) — KK(X, G) — KK(X,A) — 0
is exact for all X.

A T-projective resolution induces a spectral sequence which “computes”
K.(A x T). If strong BC is satisfied, one can take A = Al
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(T ST TN V. MI@))I Baum-Connes conjecture (2)

Baum-Connes conjecture (2)

T-projective resolution of A € KK': complex
e — G — G —G—A—0
with C; directs summands of elements of T/, and such that
- — KK(X, G1) — KK(X, G) — KK(X,A) — 0
is exact for all X.

A T-projective resolution induces a spectral sequence which “computes”
K.(AxT). If strong BC is satisfied, one can take A = A. In the length 1
case, one gets simply a cyclic exact sequence:

K(](CO X [F) — Ko(/a X [|—) — K1(C1 X I]—)

T !
KO(C]_ X [F) <— Kl(/a X U—) < Ko(Co X U—).
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Computation of K.(A,(Q))

Proposition
We have Ko(Au(Q)) ~ Z and K1(A,(Q)) ~ Z2. J

One constructs in KK' a resolution of C of the form
0 — G(MN)? — G(MN — C — 0.
Co(T) = ind&(C) lies in Tir.
One has K. (Co([)) = @ Z[r] = R(I"), ring of corepresentations of I

Induced sequence in K-theory:

0— R(IN? 2 RN -7 — 0,
exact for b(v,w) = v(& — n) + w(u — n) and d(v) = dimv.
b and d lift to KKT - T-projective resolution.
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Computation|ofii(Ax(Q))
Computation of K.(A,(Q))

Proposition
We have Ko(Au(Q)) ~ Z and K1(A,(Q)) ~ Z2. J

We obtain the following cyclic exact sequence:

Ko(Co(T) % T) = Ko(Cxl) — Ki(Go(l)2 %)
) 1
Ko(Go(T)2 ) « Ki(CxT) « Ki(Co(T) =T).

But Co(T) x T ~ K(¢%(T)), and C x I ~ C*(T) by strong BC.
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Computation of K,(A,(Q))

Proposition

We have Ko(Au(Q)) ~ Z and K1(A,(Q)) ~ Z2. J

We obtain the following cyclic exact sequence:

Z — Ko(C*I)) — 0
T \J
72 « Ki(C*(I)) <« o.
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