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Abstract. We introduce Hecke algebras associated to discrete quantum groups with
commensurated quantum subgroups. We study their modular properties and the asso-
ciated Hecke operators. In order to investigate their analytic properties we adapt the
construction of the Schlichting completion to the quantum setting, thus obtaining locally
compact quantum groups with compact open quantum subgroups. We study in detail a
class of examples arising from quantum HNN extensions.

1. Introduction

Hecke algebras, originally studied in the analysis of Hecke operators for elliptic modular
forms, play a prominent rôle in representation theory and harmonic analysis. In appli-
cations to number theory one is typically interested in Hecke operators associated with
arithmetic groups. Abstractly, the relevant operators can be described starting from a dis-
crete group Γ together with a commensurated subgroup, i.e. a subgroup Λ ⊂ Γ such that
Λ ∩ Λg has finite index in Λ for all g ∈ Γ, where Λg = gΛg−1. At this level of generality,
Hecke operators can be viewed as Γ-equivariant bounded operators on `2(Γ/Λ) and can be
described using the Hecke algebra H(Γ,Λ), which is nothing but the space of functions on
double cosets cc(Λ\Γ/Λ) equipped with a suitable convolution product.

In their seminal paper [BC95], Bost and Connes exhibited an intriguing connection
between Hecke algebras, number theory and noncommutative geometry. The Hecke algebra
underlying the Bost-Connes system is part of a quantum statistical mechanical system
whose equilibrium states are intimately related to class field theory, and the time evolution
of the system can be explicitly described by means of the modular function

∇ : g 7→ [Λ : Λ ∩ Λg]/[Λg : Λ ∩ Λg],

comparing the number of left and right cosets in a double coset.
Hecke operators and Hecke algebras can also be defined for locally compact groups G

together with compact open subgroups H ⊂ G. Moreover, both situations are related by
the Schlichting completion construction which associates to each discrete Hecke pair (Γ,Λ)
in a canonical way a pair (G,H) consisting of a totally disconnected locally compact group
G and a compact open subgroup H ⊂ G such that H(Γ,Λ) ∼= H(G,H) [Sch80]. Analytical

2020 Mathematics Subject Classification. Primary 46L67; Secondary 16T20, 20C08, 20G42, 46L05,
46L65.

Key words and phrases. Discrete quantum groups; quantum subgroups; Hecke algebras; Schlichting
completion.

1



2 ADAM SKALSKI, ROLAND VERGNIOUX, AND CHRISTIAN VOIGT

properties of the algebra of Hecke operators are often easier to analyze at the level of the
Schlichting completion, see [Tza03], [AD14] and [KLQ08].

The aim of this article is to extend some of this theory to the case of locally compact
quantum groups, both in the discrete and compact open settings. This exhibits new combi-
natorial behavior which is invisible in the classical case, related to the “relative dimension”
constants naturally associated with quantum subgroups of discrete quantum groups. A
major motivation for the passage to the quantum framework, apart from producing in-
teresting examples of von Neumann algebras, is to create new locally compact quantum
groups out of known discrete quantum groups. For this purpose we develop a generalization
of the Schlichting completion procedure, which provides a slightly new perspective even for
classical groups, and leads to a deeper understanding of the quantum quotient spaces �/�
for discrete quantum groups. The Schlichting completion yields algebraic quantum groups
in the sense of Van Daele [VD98], and we obtain concrete examples by considering pairs
(�,�) of discrete quantum groups arising from HNN extensions.

Let us describe the main results obtained in the article. After collecting some preliminar-
ies in Section 2, we begin our analysis in the setting of a subgroup � in a discrete quantum
group � in Section 3. We give a detailed description of the noncommutative quotient space
�/� and of the associated module category, see Proposition 3.5 and Theorem 3.10. This
allows us to obtain an explicit formula for the quantum analogue µ of the counting measure
on �/�, in terms of the equivalence relation induced by � on irreducible corepresentations
of �, see Definition 3.13. We also give in Proposition 3.17 a categorical interpretation of
the constants κ that appear in this formula. These constants are trivial in the classical
case.

With this in place it is easy to write down the definition of the convolution product of the
Hecke algebra H(�,�), see Definitions 3.19 and 3.24. We prove in Theorem 3.29 that this
algebra is canonically isomorphic to the algebra of Hecke operators, i.e. �-equivariant linear
maps on cc(�/�). Moreover, in Theorem 3.32 we give a combinatorial characterization of
the boundedness of the Hecke operators on `2(�/�), in terms of the constants κ.

Next we investigate the modular properties of the canonical state on H(�,�) and give
an explicit formula for the corresponding modular operator in Proposition 3.42 and Theo-
rem 3.36. This formula involves the number of left and right cosets in double cosets, as in
the classical case, but in general also the modular structure of the discrete quantum group
�, as well as the constants κ. In Paragraph 3.3 we consider an explicit class of examples
arising from HNN extensions.

In Section 4 we switch to the setting of a locally compact quantum group G with a com-
pact open quantum subgroup H, working in the framework of algebraic quantum groups.
In this case it is easier to define the Hecke algebra H(G,H) since compactly supported
functions on H\G/H are also compactly supported on G, and one can directly use the
convolution product of the quantum algebra of functions Oc(G). Again, we establish a
canonical isomorphism of H(G,H) with the algebra of G-equivariant maps on cc(G/H) in

Proposition 4.3. As an example, we discuss the case of the quantum doubles G = H ./ Ĥ of
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a compact quantum group H: in this case H(G,H) identifies with the algebra of characters
of H.

In Paragraph 4.3 we associate a pair (G,H) to each discrete Hecke pair (�,�) by means
of a quantum analogue of the Schlichting completion. More precisely, we construct Oc(G)
directly as a subalgebra of `∞(�) using the Hecke convolution product between cc(�/�) and
cc(�\�), see Definition 4.5. This seems to be a new point of view even in the classical case.
Moreover we establish in Proposition 4.14 a canonical identification between H(G,H) and
H(�,�). It follows in particular that Hecke operators are bounded on `2(G/H) as well as
on `2(�/�), and this yields an analytic proof of the combinatorial property of the constants
κ mentioned above, see Definition 3.30 and Theorem 3.32.

Finally, in Paragraph 4.4 we study the notion of reduced pair both in the discrete
setting and in the compact open one, with the property of being reduced corresponding
to faithfulness of the �-action on �/�, resp. of the G-action on G/H. We construct a
reduced pair associated to an arbitrary Hecke pair in Propositions 4.19 and 4.23. Moreover
we prove that the Schlichting completion G is non-discrete whenever the Hecke pair (�,�)
is reduced and � is infinite, see Lemma 4.21. It follows that the Schlichting completions of
the Hecke pairs constructed in Section 3.3 via HNN extensions yield non-discrete locally
compact quantum groups, whose modular automorphisms can be computed by the explicit
formulas of Paragraph 3.2.

We would like to thank the anonymous referee for their careful reading of our original
manuscript and a number of valuable suggestions and comments.

2. (Quantum group) preliminaries

In this short section we introduce general conventions, fix our notation and offer a brief
review of some definitions and facts from the theory of quantum groups. For more details
we refer the reader to the following sources: [KS97], [Wor98], [VD98], [KV00], [NT13],
[VY20].

Tensor products of algebras, minimal/spatial tensor products of C∗-algebras and Hilbert
space tensor product of spaces/operators will be usually denoted by ⊗; if we want to stress
that we are dealing with the algebraic tensor product we will use the symbol �. If ϕ is a
linear form on an algebra A and a ∈ A we denote aϕ, ϕa the forms given by aϕ(b) = ϕ(ba)
and ϕa(b) = ϕ(ab), for all b ∈ A.

2.1. Algebraic quantum groups. By definition, an algebraic quantum group G is given
by a multiplier Hopf ∗-algebra Oc(G) together with positive invariant functionals [VD98].
Recall from [KVD97] that one can associate to G in a canonical way a locally compact
quantum group, i.e. a (reduced) Hopf C∗-algebra C0(G) satisfying the axioms of Kuster-
mans and Vaes [KV00] and containing Oc(G) as a dense ∗-subalgebra. We denote by ϕ,
ψ the left and right Haar weights of G, which are defined on Oc(G). We denote the dual
multiplier Hopf algebra by D(G).

Not all locally compact quantum groups arise in this way. In particular classical locally
compact groups which fit into the algebraic quantum group framework are precisely the
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ones admitting a compact open subgroup [LVD08, Section 3], and this is precisely the class
of groups which naturally appears in the study of Hecke algebras.

More specifically, if G is a locally compact group with a compact open subgroup H ⊂ G,
then we get an algebraic quantum group by considering

Oc(G) = SpanG · O(H) ⊂ C0(G),

where O(H) is the usual space of representative functions on H, which embeds canonically
in C0(G) via extension by 0, and (g · f)(x) = f(xg) for g ∈ G and f ∈ C0(G) is the action
by right translation. The resulting multiplier Hopf ∗-algebra is independent of the choice
of H, and in fact uniquely determined [LVD08].

A morphism between algebraic quantum groups from G1 to G2 is given by a nondegen-
erate ∗-homomorphism π : Oc(G2)→M(Oc(G1)), compatible with the comultiplications.
Observe that the algebraic multiplier algebra M(Oc(G1)) typically contains operators
which are unbounded at the Hilbert space level. However, if WG2 denotes the multiplicative
unitary associated with G2, then (π⊗id)(WG2) is a unitary element ofM(Oc(G1)�D(G2)),
and hence it induces a bounded (unitary) operator on L2(G1) ⊗ L2(G2). From the prop-
erties of the multiplicative unitary at the algebraic level it follows that this yields in fact
a bicharacter at the C∗-level, and from [MRW12] we conclude that π extends to a non-
degenerate ∗-homomorphism Cu

0 (G2) → M(Cu
0 (G1)) between the universal completions

constructed in [Kus03]. That is, π determines a morphism between the associated locally
compact quantum groups. For simplicity we will abbreviate Cb(G1) = M(Cu

0 (G1)).
If G is an algebraic quantum group, then an algebraic compact open quantum subgroup

H ⊂ G is given by a non-zero central projection pH ∈ Oc(G) such that ∆(pH)(1⊗ pH) =
pH ⊗ pH, compare [KKS16, Theorem 4.3, Proposition 4.4, Corollary 3.8]. Then C(H) =
pHC0(G) is a Woronowicz-C∗-algebra and the canonical morphism from H to G corresponds
to the Hopf ∗-homomorphism πH : C0(G)→ C(H), f 7→ pHf . We note that it seems unclear
whether central projections of C0(G) satisfying the above condition (which a priori describe
all open compact quantum subgroups of G) automatically lie in Oc(G).

2.2. Discrete quantum groups. An algebraic quantum group � is called discrete if the
corresponding algebra Oc(�) is a direct sum of matrix algebras. The existence of invariant
functionals is then automatic and we have C0(�) = Cu

0 (�). In this case we use a different
notation to emphasize the analogy with the classical situation: we put Oc(�) = cc(�),
C0(�) = c0(�), Cb(�) = `∞(�), M(Oc(�)) = c(�), D(�) = C[�]. The left, resp. right Haar
weights of � are denoted hL, hR and their modular groups σL, σR; the scaling automorphism
group will be denoted τ . We will also use the antipode S, the unitary antipode R and the
co-unit ε.

We denote by Corep(�) the category of finite dimensional normal unital ∗-representations
α : `∞(�) → B(Hα), equipped with the tensor structure ⊗̃ coming from the coproduct:
α⊗̃β := (α ⊗ β)∆; for simplicity we will simply write α ⊗ β in what follows. We denote
dim(α), resp. dimq(α) the classical, resp. quantum dimension of a corepresentation α. The
trivial corepresentation is denoted 1 ∈ I(�). We denote ᾱ the conjugate corepresentation
of α, which is unique up to equivalence; by definition we have non-zero morphisms tα ∈
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Hom(1, ᾱ ⊗ α) which are uniquely determined up to a scalar when α is irreducible and
satisfy the conjugate equation.

We choose a set I(�) of representatives of irreducible objects up to equivalence. We
can then identify `∞(�) = `∞-

⊕
α∈I(�) B(Hα) and we have cc(�) =

⊕
B(Hα) and c(�) =∏

B(Hα). We denote by pα ∈ cc(�), α ∈ I(�) the minimal central projections and write
aα = pαa for a ∈ c(�). The coproduct is determined by the formula (pβ ⊗ pγ)∆(a)v = vaα
for any v ∈ Hom(α, β⊗γ) and a ∈ cc(�). Let us record the following fact which is certainly
well-known to experts.

Lemma 2.1. Let α, β ∈ I(�). The tensor product corepresentation α⊗β contains at most
dim(β)2 irreducible subobjects (counted with multiplicities).

Proof. Decompose α ⊗ β =
⊕p

i=1 γi with γi ∈ I(�). By Frobenius reciprocity we have
α ⊂ γi ⊗ β̄, hence dim(γi) ≥ dim(α)/ dim(β). Then we can write

dim(α) dim(β) =
∑

dim(γi) ≥ p
dim(α)

dim(β)
,

which yields the result. �

A quantum subgroup � of � is given by a surjective ∗-homomorphism π : `∞(�)→ `∞(�)
such that (π⊗π)∆ = ∆π. Due to the very special structure of `∞(�), one can identify `∞(�)
with p�`

∞(�) for a uniquely determined central projection p� ∈ `∞(�), in such a way that
π(a) = p�a. The coproduct of `∞(�) is then ∆�(a) = (p�⊗p�)∆(a) = (p� ⊗ id)∆(a) = (id⊗
p�)∆(a) for a ∈ `∞(�). Note that we have in the same way cc(�) = p�cc(�), c(�) = p�c(�).
Using precomposition with π the category Corep(�) is fully and faithfully embedded in
Corep(�). We take for I(�) the subset of I(�) such that α ∈ I(�) iff p�pα 6= 0. We have
1 ∈ I(�) and if α, β ∈ I(�), γ ∈ I(�) and γ ⊂ α⊗ β then γ ∈ I(�) and ᾱ, β̄ ∈ I(�).

3. Discrete quantum Hecke pairs

In this section we define the Hecke algebra associated to a discrete quantum group �
and a commensurated quantum subgroup �. We start by studying the structure of the
quotient spaces �/�, �\�, first at the level of the set of irreducible corepresentations I(�),
and then at the finer level of the quantum algebras of functions `∞(�/�), `∞(�\�). We
obtain in particular in Theorem 3.10 a description of `∞(�/�) using the classical quotient
space I(�)/�.

We can then define the Hecke algebraH(�,�) and its convolution product, and prove that
it is represented by Hecke operators on cc(�/�). We give a combinatorial characterization of
the `2-boundedness of Hecke operators and describe the modular properties of the canonical
state of H(�,�). Finally we investigate examples arising from quantum HNN extensions.

3.1. Quotient spaces.
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3.1.1. Classical cosets. Suppose that � is a discrete quantum group with a quantum sub-
group �. Associated to � is the equivalence relation ∼ on I(�) such that α ∼ β iff α ⊂ β⊗γ
for some γ ∈ I(�) iff ∆(pα)(pβ ⊗ p�) 6= 0, see [Ver04, Lemma 2.3]. There is corresponding
left version: α v β iff α ⊂ γ ⊗ β for some γ ∈ I(�) iff ∆(pα)(p� ⊗ pβ) 6= 0. We denote
by I(�)/�, �\I(�) the corresponding quotient spaces and by [α] the class of α ∈ I(�)
in I(�)/� or in �\I(�), with the context determining the choice of left or right cosets.
For σ ∈ I(�)/� or �\I(�) we write pσ =

∑
α∈σ pα ∈ `∞(�). Note that in both cases

p[1] = p�, and the projections pσ are pairwise orthogonal, central and sum up to 1. Note
that they need not be minimal central projections in `∞(�/�), but are finite sums of such,
see [DCKSS18, Section 5] and also the discussion below.

Recall that the quantum quotient spaces are given by the algebras

`∞(�/�) = {a ∈ `∞(�) | (1⊗ p�)∆(a) = a⊗ p�},
`∞(�\�) = {a ∈ `∞(�) | (p� ⊗ 1)∆(a) = p� ⊗ a}.

One can use the same conditions to define c(�/�), c(�\�) but one has to be a bit more
careful for the spaces of finitely supported functions. One can check that pσ ∈ c(�/�) for
any σ ∈ I(�)/� and one defines cc(�/�) = Span{pσc(�/�), σ ∈ I(�)/�} (and similarly for
the left versions). One can show that pσc(�/�) = pσ`

∞(�/�) for any σ ∈ I(�)/� [VV13,
Lemma 3.3]. It is easy to check that the coproduct ∆ restricts to von Neumann, resp.
algebraic left coactions ∆ : `∞(�/�) → `∞(�)⊗̄`∞(�/�), resp. ∆ : cc(�/�) →M(cc(�) ⊗
cc(�/�)), and similarly to right coactions ∆ : `∞(�\�) → `∞(�\�)⊗̄`∞(�) resp. ∆ :
cc(�\�)→M(cc(�\�)⊗ cc(�)). We have e.g. (cc(�)⊗ 1)∆(cc(�/�)) = cc(�)⊗ cc(�/�).

The next Lemma works in general for open quantum subgroups of locally compact quan-
tum groups, see [KKS16, Lemma 3.1, Corollary 3.9]. The fact that the unitary antipode
exchanges the left and right von Neumann algebraic homogeneous spaces for any closed
quantum subgroup can be found for example in [KS20]. We include a simple proof for the
discrete case.

Lemma 3.1. Let � be a quantum subgroup of �. We have R(c(�/�)) = c(�\�) and
S(c(�/�)) = c(�\�). The groups τ , σL, σR stabilize c(�/�) and c(�\�).

Proof. For any α ∈ I(�) and t ∈ R we have S(pα) = R(pα) = pᾱ and τt(pα) = σRt (pα) =
σLt (pα) = pα hence S(p�) = R(p�) = τt(p�) = σRt (p�) = σRt (p�). For a ∈ c(�/�) we have
(p�⊗ 1)∆(S(a)) = σ(S⊗S)[∆(a)(1⊗S−1(p�))] = σ(S⊗S)[∆(a)(1⊗ p�)] = σ(S⊗S)(a⊗
p�) = p� ⊗ S(a) (with σ denoting the tensor flip), hence S(a) ∈ c(�\�). The same holds
for R(a) since we also have ∆(R(a)) = σ(R ⊗ R)∆(a). On the other hand for any t ∈ R
we have (1⊗ p�)∆(τt(a)) = (τt ⊗ τt)[(1⊗ p�)∆(a)] = τt(a)⊗ p� hence τt(a) ∈ c(�/�), and
similarly on the left. Finally, note that in the discrete case we have τt = σLt = σR−t. �

One can proceed similarly for double cosets. More precisely we denote c(�\�/�) =
c(�/�) ∩ c(�\�). We consider the equivalence relation ≈ on I(�) generated by ∼ and
v, and we have in fact α ≈ β iff there exist δ, γ ∈ I(�) such that β ⊂ δ ⊗ α ⊗ γ —
indeed the set of such β’s is closed under ∼ and v, and decomposing α ⊗ γ into α′s one
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sees that β v α′ ∼ α for one of these α′s. We denote by �\I(�)/� the corresponding
quotient space and write JαK for the corresponding class of α ∈ I(�). For σ ∈ �\I(�)/�
we denote pσ =

∑
α∈σ pα ∈ `∞(�), obtaining again a family of central, pairwise orthogonal

projections summing up to 1. We clearly have pσ ∈ c(�\�/�) and we denote cc(�\�/�) =
Span{pσc(�\�/�), σ ∈ �\I(�)/�} ⊂ c(�\�/�).

For τ ∈ �\I(�)/� we have pτ =
∑
{pσ, σ ∈ I(�)/�, σ ⊂ τ} =

∑
{pσ, σ ∈ �\I(�), σ ⊂ τ}.

We denote R(τ) = #{σ ∈ I(�)/�, σ ⊂ τ} ∈ N∪{+∞} and L(τ) = #{σ ∈ �\I(�), σ ⊂ τ}.
We have cc(�/�) ∩ c(�\�) ⊂ cc(�\�/�), and similarly c(�/�) ∩ cc(�\�) ⊂ cc(�\�/�).
Already in the classical case these inclusions can be strict.

Proposition 3.2. Let � be a quantum subgroup of �. The subset I(�′) = {α ∈ I(�) |
L(JαK), R(JαK) < +∞} defines an intermediate quantum subgroup � ⊂ �′ ⊂ � such that
cc(�\�′/�) = cc(�/�) ∩ cc(�\�).

Proof. It suffices to show that I(�) ⊂ I(�′), I(�′) ⊗ I(�′) ⊂ ZI(�′) and I(�′) ⊂ I(�′),
see e.g. [Ver04, Section 2]. Since J1K = I(�) = [1] we have R(J1K) = L(J1K) = 1 and
J1K = I(�) ⊂ I(�′). Since α ∼ β ⇐⇒ ᾱ v β̄, we have L(JαK) = R(JᾱK) hence ᾱ ∈ I(�′)
if α ∈ I(�′). Let α, β ∈ I(�′) and let δ ∈ I(�), δ ⊂ α ⊗ β. Decompose into finite unions
of right cosets JαK =

⊔
[αi], JβK =

⊔
[βj], and consider the finite set of all the elements

δk ∈ I(�) such that δk ⊂ αi ⊗ βj for some i, j. Take λ, µ ∈ I(�) and γ ⊂ λ ⊗ δ ⊗ µ.
Then we have γ ⊂ λ ⊗ α ⊗ β ⊗ µ. Decomposing λ ⊗ α into α′s we have by irreducibility
γ ⊂ α′ ⊗ β ⊗ µ for some α′ ∈ I(�) and since α′ ∈ JαK we have α′ ⊂ αi ⊗ λ′ for some i and
some λ′ ∈ I(�). Then γ ⊂ αi⊗ λ′⊗ β ⊗ µ. Proceeding similarly with λ′⊗ β we find j and
λ′′ ∈ I(�) such that γ ⊂ αi ⊗ βj ⊗ λ′′ ⊗ µ. It follows that γ ∈ [δk] for some k. As a result
JδK is covered by a finite number of right cosets. Applying this to δ̄ we see that δ ∈ I(�′).

By definition, for τ ∈ �\�′/� we can write pτ as a finite sum pτ =
∑
pσi with σi ∈ I(�)/�.

It follows that cc(�\�′/�) ⊂ cc(�/�). Similarly cc(�\�′/�) ⊂ cc(�\�). Conversely, let
a ∈ cc(�/�) ∩ cc(�\�) and consider α ∈ I(�) such that pαa 6= 0. Then we claim that
pγa 6= 0 for all γ ∈ JαK. Indeed we have p[α]a 6= 0 and since a ∈ c(�/�) Lemma 3.3 in
[VV13] shows that pβa 6= 0 for all β ⊂ α⊗λ, λ ∈ I(�). Using now the fact that a ∈ c(�\�)
and again [VV13, Lemma 3.3] we have pγa 6= 0 for all γ ⊂ µ⊗ β, µ ∈ I(�). In particular
we have pσa 6= 0 for all σ ∈ I(�)/�, σ ⊂ JαK. But since a ∈ cc(�/�), there is at most a
finite number of σ’s such that pσa 6= 0. Hence R(JαK) < +∞. Similarly L(JαK) < +∞. As
a result α ∈ I(�′) and we can conclude that a ∈ c(�′). �

Definition 3.3. Let � be a quantum subgroup of �. The quantum subgroup � ⊂ �′ ⊂ �
of the previous proposition is called the commensurator of � in �. We say that (�,�) is a
Hecke pair (or that � is almost normal in �) if R(τ), L(τ) < +∞ for any τ ∈ �\I(�)/�,
or equivalently, if cc(�/�) ∩ cc(�\�) = cc(�\�/�), i.e. �′ = �.

3.1.2. Quantum cosets. We give now a more precise description of the quantum quotient
space algebra `∞(�/�) and of the corresponding Corep(�)-module-category.

For every von Neumann subalgebra M ⊂ `∞(�) we have a restriction functor from
Corep(�) = Rep(`∞(�)) to the category Rep(M) of finite dimensional normal ∗-repre-
sentations of M which factors the respective forgetful functors to the category of finite
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dimensional Hilbert spaces. If M is left invariant, i.e. ∆(M) ⊂ `∞(�)⊗̄M , then Rep(M)
is naturally equipped with the structure of a left Corep(�)-module-C∗-category, by consid-
ering α⊗ π := (α⊗ π)∆ and the Hilbert space tensor product of morphisms.

When M = `∞(�/�) this module category is equivalent to the one naturally associ-

ated with the �̂-C∗-algebra C∗r (�), compare [DCY13, Theorem 6.4]. We write Rep(M) =
Corep(�/�) in this case and choose a set I(�/�) of representatives of irreducible objects in
this category up to equivalence, not to be confused with I(�)/�. We denote Hom�/� the
corresponding morphism spaces, and note that we have a restriction functor from Corep(�)
to Corep(�/�). Moreover, to describe Corep(�/�) is suffices to describe its full subcategory
with objects from Corep(�), i.e. the spaces Hom�/�(α, β) for α, β ∈ I(�) — one can then
recover Corep(�/�) via idempotent completion.

The next proposition is a variant and improvement of [VV13, Lemma 3.3] and [DCKSS18,
Theorem 5.2, Theorem 5.6]. It gives a concrete description of `∞(�/�) and Corep(�/�).
Recall that Corep(�) is faithfully and fully embedded in Corep(�).

Definition 3.4. For v ∈ Corep(�) = Rep(`∞(�)) we denote by v� the largest subobject
of v belonging to Corep(�), given by the projection v(p�) ∈ B(Hv).

Let us apply Definition 3.4 to the space B(Hα, Hβ), viewed as a corepresentation of �
via the identification with Hᾱ⊗Hβ given by S 7→ (id⊗ S)tα. By Frobenius reciprocity we
then have

B(Hα, Hβ)� = Span{v(1⊗ η) | λ ∈ Corep(�), v ∈ Hom(α⊗ λ, β), η ∈ Hλ}
In the next proposition we use the commutant of B(Hα, Hα)� = B(Hα)� inside B(Hα):

B(Hα)′� = {b ∈ B(Hα) | bf = fb for all f ∈ B(Hα, Hα)�}
= {b ∈ B(Hα) | (b⊗ id)w = wb for all λ ∈ I(�), w ∈ Hom(α, α⊗ λ)}.

Recall that for a ∈ `∞(�) and α ∈ I(�) we denote by aα ∈ B(Hα) the component pαa
of a.

Proposition 3.5. Let � be a quantum subgroup of � and α, β ∈ I(�). The map (a 7→ aα)
is an injective ∗-homomorphism from p[α]`

∞(�/�) to B(Hα), with image pα`
∞(�/�) =

B(Hα)′�. More generally we have Hom�/�(α, β) = B(Hα, Hβ)�.

Proof. Let a ∈ `∞(�/�). We have then (pα ⊗ p�)∆(a) = aα ⊗ p�. . Since (pα ⊗ p�)∆ is
non-zero, hence also injective on any matrix block pβ`

∞(�) with β ⊂ α ⊗ λ, λ ∈ I(�), we
see that aα = 0 ⇒ p[α]a = 0. Denote b = aα, and let v ∈ Hom(α, α ⊗ λ) with λ ∈ I(�).
We have b⊗ pλ = (pα ⊗ pλ)∆(a) hence (b⊗ id)v = (pα ⊗ pλ)∆(a)v = vpαa = vb.

Conversely, start from an element b ∈ B(Hα)′�. Then, for any λ, µ ∈ I(�) and any
v ∈ Hom(α, α ⊗ λ ⊗ µ) we have vb = (b ⊗ id ⊗ id)v — it suffices to decompose λ ⊗ µ
into irreducibles, which are still in I(�). Even more, for any v ∈ Hom(α ⊗ λ, α ⊗ µ) we
have v(b ⊗ id) = (b ⊗ id)v — apply the previous property to w = (v ⊗ id)(id ⊗ tλ) ∈
Hom(α, α⊗ µ⊗ λ̄) and the conjugate equation.

Now, for any β ∈ [α], choose λβ ∈ I(�) and vβ ∈ Hom(β, α ⊗ λβ) isometric — with
λα = 1 and vα = id. Define aβ ∈ B(Hβ) by putting aβ = v∗β(b ⊗ id)vβ. Take β, β′ ∈ [α],
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µ ∈ I(�) and w ∈ Hom(β, β′⊗µ). Then we have, applying the identity (b⊗ id)u = u(b⊗ id)
to u = (vβ′ ⊗ id)wv∗β ∈ Hom(α⊗ λβ, α⊗ λβ′ ⊗ µ):

waβ = (v∗β′ ⊗ id)(vβ′ ⊗ id)wv∗β(b⊗ id)vβ

= (v∗β′ ⊗ id)(b⊗ id⊗ id)(vβ′ ⊗ id)wv∗βvβ = (aβ′ ⊗ id)w.

This shows that (pβ′⊗pµ)∆(aβ) = aβ′⊗pµ. Putting all aβ together we obtain a ∈ p[α]`
∞(�)

such that (id ⊗ p�)∆(a) = a ⊗ p�, i.e. a ∈ p[α]`
∞(�/�). Moreover by our choice of vα we

have aα = b. �

Remark 3.6. In particular p[α]`
∞(�/�) is a finite dimensional C∗-algebra for all [α] ∈

I(�)/�, hence `∞(�/�) is a von Neumann direct product of matrix algebras. The inclusion
pα`
∞(�/�) ⊂ B(Hα) can be strict, even for all elements α in a given class σ ∈ I(�)/� —

e.g. we always have p[1]`
∞(�/�) = C, and for the dual of SO(3) seen as a subgroup of the

dual of SU(2) we have pσ`
∞(�/�) = C for both classes σ ∈ I(�)/�. It can also happen,

e.g. for �1 ⊂ �1 × �2, that pα`
∞(�/�) is a proper, non-trivial sub-C∗-algebra of B(Hα).

Further, recall that [DCKSS18, Theorem 5.2, Theorem 5.6] show that each [α] corre-
sponds to a certain equivalence class of minimal central projections in `∞(�/�), determined

by the left adjoint action of �̂, and p[α] is equal to the sum of the projections in the afore-
mentioned equivalence class. Thus the fact that each pα`

∞(�/�) is simple is equivalent to
the equivalence relation above being trivial. This need not be the case, as already classical
Clifford theory shows.

One can reformulate the Hecke condition of Definition 3.3 using the left action of �
on `∞(�/�) given by α(a) = (p� ⊗ 1)∆(a) ∈ `∞(�)⊗̄`∞(�/�) for a ∈ `∞(�/�). Follow-
ing [DKSS12, Section 4], define an equivalence relation on I(�/�) by putting i ≡� j if
∆(qi)(p�⊗qj) 6= 0, where qi, qj are the minimal central projections in `∞(�/�) correspond-
ing to i and j respectively. Equivalently, i ≡� j iff j ⊂ λ ⊗ i for some λ ∈ I(�) with
respect to the module-category structure mentioned previously. Then the Hecke condition
is satisfied iff the action of � on �/� “has finite orbits”, as stated precisely in the next
proposition.

Proposition 3.7. The pair (�,�) is a Hecke pair iff the equivalence relation ≡� on I(�/�)
has finite classes.

Proof. Denote by qi ∈ `∞(�/�) the minimal central projection associated with i ∈ I(�/�).
For any [α] ∈ I(�)/� we have a finite set I([α]) ⊂ I(�/�) such that p[α] =

∑
i∈I([α]) qi. This

implies that the action of � on `∞(�/�) has finite orbits if and only if for any [α] ∈ I(�)/�
there exist only finitely many [β] ∈ I(�)/� such that ∆(p[α])(p� ⊗ p[β]) 6= 0. This means
that we can find α′ ∈ [α], β′ ∈ [β] such that α′ v β′, in other words JαK = JβK. This ends
the proof. �

We will now represent invariant functions using ∆(p�), see Theorem 3.10, which is es-
sentially a consequence of Proposition 3.5 and “strong invariance” of the Haar weights
([KV00, Proposition 5.24]). The quantities κ below will play a fundamental role in the



10 ADAM SKALSKI, ROLAND VERGNIOUX, AND CHRISTIAN VOIGT

sequel. Recall that for v ∈ Corep(�) we denote by v� the sum of all irreducible subobjects
of v equivalent to an element of I(�).

Definition 3.8. For α, β ∈ I(�) we put κα,β = dimq(α⊗ β)� and κα = κᾱ,α.

We first make the connection between the constants κα,β and the Hopf algebra structure
of `∞(�). Recall that we denote aϕ = ϕ( · a), ϕa = ϕ(a · ) if ϕ is a linear form on an
algebra and a an element of this algebra.

Lemma 3.9. For every α, β ∈ I(�) we have

(hRp� ⊗ pβ)∆(pα) =
dimq(α)

dimq(β)
κα,β̄pβ.

In particular (hRp� ⊗ pα)∆(pα) = κᾱpα.

Proof. We first show that for any α, β, λ ∈ I(�) the linear map (hRpλ⊗pβ)∆(pα) ∈ B(Hβ)
is an intertwiner, hence a scalar. Indeed, we have hR(a) = dimq(α)t∗α(1 ⊗ a)tα for any
a ∈ pαc(�) = B(Hα), where tα ∈ Hom(1, ᾱ ⊗ α) is such that ‖tα‖2 = dimq(α). Then, if
(vi)i is an ONB of Hom(α, λ⊗β) and P λ,β

α =
∑
viv
∗
i ∈ B(Hλ⊗Hβ) denotes the orthogonal

projection onto the α-isotypic component of λ⊗ β, we have

(hRpλ ⊗ pβ)∆(pα) = dimq(λ)
∑

i(t
∗
λ ⊗ id)(id⊗ vipαv∗i )(tλ ⊗ id)

= dimq(λ) (t∗λ ⊗ id)(id⊗ P λ,β
α )(tλ ⊗ id) ∈ Hom(β, β).

Hence there is a scalar κλ
α,β̄
≥ 0 such that (hRpλ ⊗ pβ)∆(pα) = κλ

α,β̄
pβ. This scalar can

be computed by evaluating both sides against hR. We obtain, after dividing both sides by
dimq(β):

dimq(β)× κλα,β̄ = dimq(λ) t∗β(id⊗ t∗λ ⊗ id)(id⊗ id⊗ P λ,β
α )(id⊗ tλ ⊗ id)tβ

= dimq(λ) t∗λ⊗β(idβ̄⊗λ̄ ⊗ P λ,β
α )tλ⊗β = dimq(λ)

∑
it
∗
λ⊗β(idβ̄⊗λ̄ ⊗ viv∗i )tλ⊗β

= dimq(λ)cλ,βα t∗αtα = cλ,βα dimq(λ) dimq(α),

where cλ,βα = dim(Hom(α, λ ⊗ β)). Note that an analogous formula appears already in
work of Izumi, see the remark before Corollary 3.7 in [Izu02].

By Frobenius reciprocity we also have cλ,βα = cα,β̄λ . Summing over λ ∈ I(�) we get

dimq(β)× (hRp� ⊗ pβ)∆(pα) = dimq(α)
(∑

λ∈I(�)c
α,β̄
λ dimq(λ)

)
pβ

= dimq(α) dimq(α⊗ β̄)�pβ,

which yields the claim. �

Theorem 3.10 below is a very useful tool for the study of Hecke algebras associated to
discrete quantum groups. It is merely a materialization of Proposition 3.5, which says
that one can recover a ∈ p[α]c(�/�) from aα, and it is a simple consequence of the so-called
strong invariance properties of the Haar weights. It is well-known in the case when � = {e}
— then p� is the support of the co-unit and κα = 1 for every α. It has several corollaries
important for what follows.
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Theorem 3.10. For any a ∈ cc(�/�), b ∈ cc(�\�) and any choices of representatives
α ∈ [α], β ∈ [β] we have

a =
∑

[α]∈I(�)/�

κ−1
α (S−1(aα)hR ⊗ id)∆(p�) =

∑
[α]∈I(�)/�

κ−1
α (hRS(aα)⊗ id)∆(p�)(3.1)

b =
∑

[β]∈�\I(�)

κ−1
β̄

(id⊗ hLS−1(bβ))∆(p�) =
∑

[β]∈�\I(�)

κ−1
β̄

(id⊗ S(bβ)hL)∆(p�)(3.2)

Proof. We start with a ∈ cc(�\�), α ∈ I(�) and λ ∈ I(�). By strong right invariance we
have (aαhR ⊗ id)∆(pλ) = (hR ⊗ S)((pλ ⊗ id)∆(aα)) hence (aαhR ⊗ pᾱ)∆(pλ) = (hR ⊗ S)
((pλ⊗pα)∆(aα)). By left invariance of a we have (pλ⊗pα)∆(aα) = (1⊗aα)(pλ⊗pα)∆(pα)
so that (aαhR ⊗ pᾱ)∆(pλ) = (hR ⊗ S)((pλ ⊗ pα)∆(pα))S(aα). Summing over λ ∈ I(�) and
applying Lemma 3.9 we obtain

(aαhR ⊗ pᾱ)∆(p�) = (hR ⊗ S)((p� ⊗ pα)∆(pα))S(aα) = κᾱS(aα).

By Lemma 3.1, for a ∈ cc(�/�) we can apply this formula to S−1(aα) ∈ pᾱc(�\�), which
yields aα = κ−1

α (S−1(aα)hR⊗pα)∆(p�). Now we observe that the right-hand side also lies in
pαcc(�/�). Indeed we have ∆(p�)(1⊗p�) = p�⊗p� hence ∆2(p�)(1⊗1⊗p�) = ∆(p�)⊗p�,
which implies ∆(x)(1⊗ p�) = x⊗ p� for any x = (ϕ⊗ id)∆(p�), by applying ϕ⊗ id⊗ id.
Consequently we can apply Proposition 3.5 which yields p[α]a = κ−1

α (S−1(aα)hR⊗p[α])∆(p�)
and summing over [α] we obtain the first equality in (3.1).

Equation (3.2) follows by applying (3.1) to a = S−1(b): this yields b =
∑

[α]∈I(�)/� κ
−1
α

(hRbᾱ ⊗ S)∆(p�). Since p� = S−1(p�) and ∆S−1 = (S−1 ⊗ S−1)σ∆ we also have b =∑
[α]∈I(�)/� κ

−1
α (id⊗(hRbᾱ)S−1)∆(p�). Finally we have (hRbᾱ)S−1 = S(bᾱ)hL and we obtain

the rightmost side of (3.2) since [β] = [ᾱ] runs through �\I(�) when [α] runs through
I(�)/�.

The missing identities in (3.1) and (3.2) follow by replacing a, b with a∗, b∗ and taking
adjoints on both sides. Alternatively one can use the fact that as we are in the context of
discrete quantum groups we have hL(ab) = hL(bS2(a)), hR(ab) = hR(bS−2(a)). �

Corollary 3.11. Let a ∈ c(�/�), b ∈ c(�\�). Then κ−1
α hL(aα) only depends on the class

[α] ∈ I(�)/�, and κ−1
β̄
hR(bβ) only depends on the class [β] ∈ �\I(�).

Proof. One can assume that a ∈ p[α]c(�/�) and b = S(a) ∈ p[β]c(�\�) with β = ᾱ. We
have a = κ−1

α (S−1(aα)hR⊗ id)∆(p�) by (3.1) and p[β] = κ−1
β̄

(id⊗hLS−1(pβ))∆(p�) by (3.2).

We compute then

κ−1
β̄
hR(bβ) = κ−1

β̄
hL(S−1(pβ)a) = κ−1

β̄
κ−1
α (S−1(aα)hR ⊗ hLS−1(pβ))∆(p�)

= κ−1
α hR(pβS

−1(aα)) = κ−1
α hL(aαS(pβ)) = κ−1

α hL(aα).

Since the left-hand (resp. right-hand) side does not depend on the choice of α in [α] (resp.
β ∈ [β]), we are done. �

Note in particular that κ−1
α hL(pα) = dimq(α)2/κα depends only on [α] ∈ I(�)/�. We

have in fact the more general result below.
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Corollary 3.12. The quantity κᾱ,β/(dimq(ᾱ) dimq(β)) depends only on the classes [α],
[β] ∈ I(�)/�.

Proof. We can assume [α] = [β] — otherwise κ(ᾱ, β) = 0. Since κᾱ,β = κβ̄,α it suffices to
prove the independence on β. We apply (3.1) with a = p[α]: this yields p[α] = κ−1

α (hRpᾱ ⊗
id)∆(p�). In particular hR(pβ) = κ−1

α (hRpᾱ ⊗ hRpβ)∆(p�). Computing as in the proof of

Lemma 3.9 and denoting P ᾱ,β
� =

∑
λ∈� P

ᾱ,β
λ this can be written

(dimq(β))2 = κ−1
α dimq(α) dimq(β) t∗ᾱ⊗β(id⊗ id⊗ P ᾱ,β

� )tᾱ⊗β

= κ−1
α dimq(α) dimq(β) dimq(ᾱ⊗ β)� = κ−1

α dimq(α) dimq(β) κᾱ,β.

This shows that κᾱ,β/ dimq(β) does not depend on β ∈ [α]. �

We remark that Corollary 3.12 also has a purely categorical proof, suggested to us by
the referee. Fix α ∈ I(�) and consider the right Corep(�)-module category D ⊂ Corep(�)
generated by α. Consider also the functor α : D → Corep(�), v 7→ (ᾱ ⊗ v)�. This is
the internal Hom functor for D, in the sense that Hom�(α ⊗ λ, v) ' Hom�(λ, α(v)) for
all v ∈ D, λ ∈ Corep(�). In [NY18, Lemma A.4] it is shown that the rescaled Frobenius
reciprocity isomorphism

Hom�(β, β′ ⊗ λ)→ Hom�(β ⊗ λ̄, β′), T 7→
√
κᾱ,β′

κᾱ,β
T̃ ,

with T̃ = (idβ′ ⊗ R̄∗λ)(T ⊗ idλ̄), is unitary with respect to the hermitian structures given

by S∗T = 〈S, T 〉idβ, S̃T̃ ∗ = 〈T̃ , S̃〉idβ′ for β, β′ ∈ [α]. Now choose an isometric embedding

T : β → β′ ⊗ λ with some λ ∈ Corep(�). We have ‖T‖2 = 1, and using qTr(T̃ T̃ ∗) =
qTr(TT ∗) = dimq(β)we obtain ‖T̃‖2 = dimq(β)/ dimq(β

′). Then unitarity of the map
above then shows that κᾱ,β′/ dimq(β

′) = κᾱ,β/ dimq(β) as required.

Let us finally introduce the quantum analogues µ, ν of the counting measures on �/�
resp. �\�. We will see at Proposition 3.21 that µ is the (necessarily unique, up to scalar
multiplication) �-invariant weight on cc(�/�). Observe that, applying (3.1) to a∗ we obtain

a∗ =
∑

[α]∈I(�)/�

κ−1
α (hRS(a∗α)⊗ id)∆(p�).

This explains the last identity in the following definition. By Corollary 3.11 we also see
that µ, ν and (a | b) as defined below do not depend on the choices of γ ∈ [γ].

Definition 3.13. Define µ ∈ cc(�/�)∗ by µ(a) =
∑

[α]∈I(�)/� κ
−1
α hL(aα) where aα = pαa.

We endow cc(�/�) with the following positive-definite sesquilinear form, where a, b ∈
cc(�/�):

(a | b) = µ(a∗b) =
∑

[γ]∈I(�)/�

κ−1
γ hL(a∗pγb)(3.3)

=
∑

[α],[β]

κ−1
α κ−1

β (hRS(a∗α)⊗ bβhL)∆(p�).(3.4)
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We similarly define ν ∈ cc(�\�)∗ by ν(b) =
∑

[β]∈�\I(�) κ
−1
β̄
hR(bβ), b ∈ cc(�\�). Finally for

a ∈ cc(�/�) we write ‖a‖�/� := (a | a)1/2.

Remark 3.14. This definition agrees via the Fourier transform with the scalar product
on the “dual algebra” C[�/�] introduced in [VV13]. Recall that this algebra is defined as
the relative tensor product C[�/�] = C[�]⊗C[�] C with respect to the canonical embedding
C[�] ⊂ C[�] and to the counit ε : C[�] → C. The duality between cc(�) and C[�] is
described by the multiplicative unitary W =

⊕
α∈I(�) uα ∈ M(cc(�) ⊗ C[�]) — recall

that we have (∆ ⊗ id)(W ) = W13W23, (id ⊗ ∆)(W ) = W13W12, (S ⊗ id)(W ) = W ∗ =
(id ⊗ S−1)(W ), and also, applying S−1 ⊗ S: (id ⊗ S)(W ) = (S−1 ⊗ id)(W ). Recall also
that we have a canonical conditional expectation E : C[�] → C[�], see [Ver04]. Following
[VV13] we consider the linear bijection F−1

� : C[�/�] → cc(�/�) given by F−1
� (x) =

(id⊗ εES(x))(W ), which corresponds to (the inverse of) the Fourier transform when � =
{e}. Using Theorem 3.10 one can check the following explicit formula for the inverse map
F� : cc(�/�)→ C[�/�]:

F�(a) = (aµ⊗ id)(W )⊗C[�] 1.

On the other hand the space C[�/�] has a natural prehilbertian structure given by (x | y) =
εE(x∗y). One can then easily check that F� is an isometry with respect to this scalar
product on C[�/�] and the one of Definition 3.13 on cc(�/�).

3.1.3. The constants κ. In contrast to the classical case, where they trivialize, the constants
κ of Definition 3.8 play an important role in the theory of quantum group Hecke algebras (or
in the quantum version of the Clifford theory). In this subsection we give more details about
them, which will however not be used in the rest of the article (except in Proposition 3.22).

Let us first note that related constants already appeared in Lemma 3.5 of [KKSV], which
states the existence, for every α ∈ I(�), of a constant ηα > 0 such that

(id⊗ qTrᾱ)∆(p�) = ηαp[α],

where [α] ∈ �\I(�). As we have hLpᾱ = dimq(α) qTrᾱ, comparing the formulas shows that
we have in fact ηα = κᾱ/ dimq(α).

The next example shows that we do not have κᾱ = κα in general.

Example 3.15. We consider the quantum subgroup � ⊂ � = Z∗�, where � is any discrete
quantum group. Denote by a the generating corepresentation of Z and take v ∈ I(�).
Consider α = v ⊗ a, which is an irreducible corepresentation of �. We have ᾱ ⊗ α '⊕

w⊂v̄⊗v a
−1 ⊗ w ⊗ a, hence κα = 1, and α⊗ ᾱ = v ⊗ v̄ hence κᾱ = dimq(v)2.

If � is non-classical one can choose v such that κᾱ = dimq(v)2 > 1 = κα, and if � is
finite, we are in the setting of Hecke pairs. For � finite and non classical we can further
consider �∞ = lim−→�n which is still commensurated inside �∞. For w ∈ Corep(�) we denote

w(k) ∈ Corep(�∞) the corepresentation corresponding to w and the kth copy of � in �∞.
Then for any v ∈ I(�) such that dimq(v) > 1 and α =

⊗n
k=1(v ⊗ a)(k) ∈ I(�∞) we have

κᾱ/κα = dimq(v)2n which is not bounded.
If one allows non commensurated quantum subgroups, one can take for � the dual of

SU(2) and we see again that the ratios κᾱ/κα are not bounded when α varies. Notice also
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that v = α ⊗ ā, κv = dimq(v)2 and κα = 1. This shows that there is no control on the
ratios κγ/κα either when γ ⊂ α⊗ β with β ∈ I(�) fixed.

We shall now give another interpretation of the constants κα,β in terms of the Corep(�)-
module category Corep(�/�). Let us first introduce some more relevant notation. For
π ∈ Corep(�) and α ∈ I(�) we denote Mα,π = Hom(α, π), so that Hπ '

⊕
α∈I(�)Hα⊗Mα,π

canonically. When π = β ⊗ γ we denote Cβ,γ
α = Mα,π, so that the dimensions cβ,γα =

dim(Cβ,γ
α ) are the structure constants of the based Grothendieck ring of Corep(�).

We can extend this notation to objects of Corep(�/�). For i ∈ I(�/�), π ∈ Corep(�)
we thus denote Mi,π = Hom�/�(i, π) where π is identified to an object in Corep(�/�) by

restriction. Similarly we denote Cβ,j
i = Hom�/�(i, β⊗j) for i, j ∈ I(�/�) and β ∈ Corep(�).

Recall that the modular group of the left Haar weight is implemented by the (possibly
unbounded) modular element F ∈ c(�) via the formula σLt (f) = F itfF−it. For π ∈
Corep(�) we denote Fπ = π(F ) ∈ B(Hπ) and we recall the definition of the quantum
dimension dimq(π) = Tr(Fπ) = Tr(F−1

π ). Decomposing Hπ '
⊕

αHα ⊗ Mα,π we have
Fπ =

∑
Fα ⊗ id.

In general F does not belong to cc(�/�) but we still have an induced modular structure on
this subalgebra. More precisely, take α ∈ I(�) and decompose Hα '

⊕
i∈I(�/�) Hi⊗Mi,α in

Corep(�/�). Since σLt stabilizes `∞(�/�) by Lemma 3.1, Ad(F it
α ) stabilizes α(`∞(�/�)) '⊕

iB(Hi)⊗ id ⊂ B(Hα), hence also α(`∞(�/�))′ '
⊕

i id⊗ B(Mi,α). It follows that for i
such that Mi,α 6= 0 there exist unique positive elements Fi ∈ B(Hi), Li,α ∈ B(Mi,α) such
that Tr(Fi) = Tr(F−1

i ), Tr(Li,α) = Tr(L−1
i,α) and Fα = diagi(Fi ⊗ Li,α).

Furthermore, decomposing Hβ ⊗ Hj '
⊕

iHi ⊗ Cβ,j
i , we claim the existence of a cor-

responding decomposition Fβ ⊗ Fj = diagi(Fi ⊗ Dβ,j
i ). Indeed, consider the canonical

isomorphisms

Hβ ⊗Hα '
⊕

jHβ ⊗Hj ⊗Mj,α '
⊕

i,jHi ⊗ Cβ,j
i ⊗Mj,α.

Since ∆(F ) = F⊗F we have Fβ⊗α = Fβ⊗Fα = diag(Fβ⊗Fj⊗Lj,α). In particular Ad(F it
β⊗α)

stabilizes B(Hβ)⊗ α(`∞(�/�)) '
⊕

j B(
⊕

iHi ⊗Cβ,j
i )⊗ id, and also (β ⊗ α)(`∞(�/�)) '⊕

iB(Hi) ⊗ id ⊗ id, hence it stabilizes the relative commutant
⊕

i,j id ⊗ B(Cβ,j
i ) ⊗ id as

well. This shows the existence of a unique positive element Dβ,j
i ∈ B(Cβ,j

i ) such that

Tr(Dβ,j
i ) = Tr((Dβ,j

i )−1) and Fβ ⊗ Fα = diagi,j(Fi ⊗ Dβ,j
i ⊗ Lj,α). We have then also

Fβ ⊗ Fj = diagi(Fi ⊗D
β,j
i ).

We summarize the conclusions of this discussion in the next proposition.

Proposition 3.16. For i, j ∈ I(�/�), α, β ∈ I(�) we denote Fi ∈ B(Hi), Li,α ∈ B(Mi,α),

Dβ,j
i ∈ B(Cβ,j

i ) the unique positive elements, normalized by the identity Tr(A) = Tr(A−1),

such that Fα = diag(Fi ⊗ Li,α) and Fβ ⊗ Fi = diag(Fj ⊗ Dβ,i
j ). The element Fi does

not depend on the choice of α ∈ I(�) such that Mi,α 6= 0. We introduce the quantum
dimensions, quantum multiplicities and quantum structure coefficients as follows:

dimq(i) = Tr(Fi), qmult(i, α) = Tr(Li,α), qcβ,ji = Tr(Dβ,j
i ).
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Proof. The element Fi does not depend on α because Ad(F it
i ) corresponds for every t ∈ R to

the restriction of σLt to `∞(�/�)qi, where qi denotes the relevant minimal central projection
of `∞(�/�). �

By considering the case of a quantum subgroup � ⊂ � = �×�′ with �, �′ non unimodular
one sees that the elements Fi, Li,α, Dβ,j

i can be non trivial, and that their traces are in
general different from the classical dimensions dim(i) = dim(Hi), the classical multiplicity

mult(i, α) = dim(Hom(i, α)) and the classical coefficients cβ,ji = dim(Hom(i, β ⊗ j)).

We denote by C[�], C[�/�] the free vector spaces generated by I(�), I(�/�), endowed
with the scalar products such that I(�), I(�/�) are orthonormal bases. To any representa-
tion π ∈ Corep(�/�) corresponds naturally an element π =

∑
i∈I(�/�) mult(i, π)i ∈ Z[�/�].

When π comes from Corep(�) one can use quantum multiplicities and we denote

π̃ =
∑

i∈I(�/�)

qmult(i, π)i ∈ R[�/�].

Note that we have π̃ = π in C[�] if � is unimodular.

Proposition 3.17. For α, β ∈ I(�) we have κᾱ,β = (α̃ | β̃), where (· | ·) is the scalar
product of C[�/�]. In particular κα = ‖α̃‖2.

Proof. Recall the identification Hom�/�(α, β) = (ᾱ ⊗ β)� via the map T 7→ (id ⊗ T )tα,
T ∈ Hom�/�(α, β). We have (Fᾱ ⊗ Fβ)(id ⊗ T )tα = (id ⊗ FβTF

−1
α )tα. Denote by F ∈

B(Hom�/�(α, β)) the map given by F(T ) = FβTF
−1
α for T ∈ Hom�/�(α, β) ⊂ B(Hα, Hβ),

so that we have κᾱ,β = Tr(F). Decomposing Hα '
⊕

Hi ⊗Mi,α, Hβ '
⊕

Hi ⊗Mi,β we
have Hom�/�(α, β) =

⊕
i idi ⊗ B(Mi,α,Mi,β). Using the corresponding decomposition of

the F -matrices we have F(T ) =
∑

i Li,βTiL
−1
i,α for T = diag(id⊗Ti). Computing Tr(F) in a

basis of matrix units this yields κᾱ,β =
∑

i Tr(Li,β) Tr(L−1
i,α) =

∑
i qmult(i, β) qmult(i, α) =

(α̃ | β̃). �

We have then the following result generalizing (and resulting from) Corollary 3.12:

Proposition 3.18. The vector α̃ / dimq(α) ∈ C[�/�] only depends on [α].

Proof. We have to show that for i ∈ I(�/�), α ∈ I(�), the number qmult(i, α)/ dimq(α)
depends only on i and the class [α] ∈ I(�)/�. Denote by qi ∈ cc(�/�) ⊂ `∞(�) the minimal
central projection of cc(�/�) corresponding to i ∈ I(�/�). We have (qi)α = qipα and so
by Corollary 3.11 the number κ−1hL(qipα) only depends on [α]. On the other hand we can
compute it using the canonical identification Hα '

⊕
iHi ⊗Mi,α as follows:

κ−1
α hL(qipα) = κ−1

α dimq(α) Tr(F−1
α pαqi) = κ−1

α dimq(α)(Tr⊗Tr)(F−1
i ⊗ L−1

i,α)

= dimq(i)
dimq(α)2

κα

qmult(i, α)

dimq(α)
.

The assertion follows since dimq(α)2/κα only depends on [α] by Corollary 3.12. �

3.2. The Hecke algebra.



16 ADAM SKALSKI, ROLAND VERGNIOUX, AND CHRISTIAN VOIGT

3.2.1. The convolution product. Now we introduce the Hecke convolution product. Note
that, thanks to Theorem 3.10, the different expressions for a∗ b given in the next definition
are indeed equal. By comparing (3.5) and (3.7) one sees that they do not depend on the
choices of α ∈ [α], β ∈ [β].

Definition 3.19. Let a ∈ cc(�/�), b ∈ cc(�\�). According to Theorem 3.10 we can define
a ∗ b ∈ c(�) as follows:

a ∗ b =
∑

[α]∈I(�)/�

κ−1
α (S−1(aα)hR ⊗ id)∆(b) =

∑
[α]∈I(�)/�

κ−1
α (hRS(aα)⊗ id)∆(b)(3.5)

=
∑

[α],[β]

κ−1
α κ−1

β̄
(S−1(aα)hR ⊗ id⊗ hLS−1(bβ))∆2(p�)(3.6)

=
∑

[β]∈�\I(�)

κ−1
β̄

(id⊗ hLS−1(bβ))∆(a) =
∑

[β]∈�\I(�)

κ−1
β̄

(id⊗ S(bβ)hL)∆(a).(3.7)

In the classical case � = Γ we have κα = 1 for all α ∈ Γ, and we recover the classical
formulae for the Hecke convolution product [Shi71]. Note that one can in fact define
a ∗ b ∈ c(�) for a ∈ cc(�/�), b ∈ c(�\�) (resp. a ∈ c(�/�), b ∈ cc(�\�)) using (3.5)
(resp. (3.7)). The following results are immediate from the Definition:

Proposition 3.20. For any a ∈ cc(�/�), b ∈ cc(�\�) we have ∆(a ∗ b) = (a ∗⊗id)∆(b) =
(id⊗∗b)∆(a). In particular we have a∗b ∈ c(�/�) if b ∈ cc(�\�)∩c(�/�) and a∗b ∈ c(�\�)
if a ∈ cc(�/�) ∩ c(�\�).

One can also express the convolution product using the functionals µ, ν from Defini-
tion 3.13, for instance we have a ∗ b = ((µa)S ⊗ id)∆(b) for a ∈ cc(�/�), b ∈ c(�\�)
and a ∗ b = (id ⊗ S(b)µ)∆(a) for a ∈ c(�/�), b ∈ cc(�\�). From the first expression and
Proposition 3.20 we then immediately obtain the following statement.

Proposition 3.21. For any a ∈ cc(�/�) we have a ∗ 1 = µ(a)1, where µ is the functional
of Definition 3.13. Moreover µ is �-invariant: we have (id ⊗ µ)∆(a) = µ(a)1 for any
a ∈ cc(�/�).

In the next proposition we give a description of the convolution product between cc(�/�)
and cc(�\�) = S(cc(�/�)) using only the structure of the �-invariant subalgebra `∞(�/�) ⊂
`∞(�), without explicit reference to the quantum subgroup �. Note that by Proposi-
tion 3.18 the fractions appearing in the expression (3.8) only depend on i (and not on the
choice of βi).

Proposition 3.22. Choose for each i ∈ I(�/�) an element βi ∈ I(�) such that qmult(i, βi)
6= 0 and consider the linear forms ϕi : `∞(�/�) → C, ϕi(a) = Tr(F−1

i ) Tr(F−1
i ai). Then

for all a ∈ cc(�/�), b ∈ cc(�\�) we have

(3.8) a ∗ b =
∑

i∈I(�/�)

dimq(βi) qmult(i, βi)

κβi dimq(i)
(id⊗ S(b)ϕi)∆(a).
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Proof. We start from the last expression in equation (3.7). We shall compute the linear
form

∑
[β] κ

−1
β̄
S(bβ)hL on the matrix blocks of cc(�/�) using the canonical identification

pβ̄cc(�/�) '
⊕

iB(Hi)⊗ idM(i,β̄) ⊂ B(Hβ̄). For a ∈ cc(�/�) we have∑
[β]

κ−1
β̄
S(bβ)hL(a) =

∑
[β]

∑
i

κ−1
β̄

Tr(F−1
β̄

)(Tr⊗Tr)(F−1
i aiS(b)i ⊗ L−1

i,β̄
)

=
∑
[β]

∑
i

κ−1
β̄

dimq(β̄) Tr(F−1
i aiS(b)i) qmult(i, β̄).

Putting β̄ = βi for each i ∈ I(�/�) we obtain (3.8). �

Proposition 3.23. If a, b ∈ cc(�/�)� := cc(�/�) ∩ c(�\�) then a ∗ b ∈ cc(�/�)� as well.
The convolution production defined in this way on cc(�/�)� is bilinear, associative, with
unit element p�. We have σRt (a∗ b) = σRt (a)∗σRt (b) for any t ∈ R. One obtains similarly a
convolution product on cc(�\�)� = cc(�\�) ∩ c(�/�). Moreover, the map a 7→ a] := S(a∗)
is an antimultiplicative, antilinear involution exchanging both convolution algebras.

Proof. Since (cc(�)⊗1)∆(cc(�/�)) = cc(�)⊗cc(�/�) it follows from (3.5) that a∗b ∈ cc(�/�)
if a, b ∈ cc(�/�)�. It follows from (3.5) and Theorem 3.10 that p� is a unit for the
convolution product.

To prove associativity we will use (3.7) to compute b ∗ c with b ∈ cc(�/�), c ∈ c(�\�).
This makes sense in the multiplier algebra c(�). Indeed, fix δ ∈ I(�) and note that if
(pδ ⊗ hLS

−1(cγ))∆(b) is non zero for γ ∈ I(Γ), there exists β such that bβ 6= 0 and
β ⊂ δ ⊗ γ̄. Then γ̄ ⊂ δ̄ ⊗ β, i.e. [γ] ∈ �\I(�) is conjugate to the class in I(�)/� of a
subobject of δ̄ ⊗ β. Since there is only a finite number of classes [β] ∈ I(�)/� such that
bβ 6= 0, there is only a finite number of classes [γ] ∈ �\I(�) which yield a non-zero term
on the right-hand side of (3.7).

Now for a, b, c ∈ cc(�/�)� we can write, using classes [α] ∈ I(�)/�, [γ] ∈ �\I(�):

a ∗ (b ∗ c) =
∑

[α],[γ]

κ−1
α κ−1

γ̄ (S−1(aα)hR ⊗ id)∆((id⊗ hLS−1(cγ))∆(b))

=
∑

[α],[γ]

κ−1
α κ−1

γ̄ (S−1(aα)hR ⊗ id⊗ hLS−1(cγ))∆
2(b)

=
∑

[α],[γ]

κ−1
α κ−1

γ̄ (id⊗ hLS−1(cγ))∆((S−1(aα)hR ⊗ id)∆(b)) = (a ∗ b) ∗ c.

Since ∆σRt = (σRt ⊗ σRt )∆, the modular automorphisms leave B(Hα) invariant and SσRt =
σRt S we have, for a ∈ cc(�/�) and b ∈ c(�\�):

σRt (a) ∗ σRt (b) =
∑

[α]∈I(�)/�

κ−1
α (hR ⊗ id)[(σRt ⊗ σRt )∆(b)(σRt S

−1(aα)⊗ 1)]

=
∑

[α]∈I(�)/�

κ−1
α (hR ⊗ σRt )[∆(b)(S−1(aα)⊗ 1)] = σRt (a ∗ b).
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We compute similarly for the involution, using first (3.5) and then (3.7):

a] ∗ b] =
∑

[α]∈I(�)/�

κ−1
α (a∗ᾱhR ⊗ id)∆(S(b∗)) =

∑
[α]∈I(�)/�

κ−1
α (S ⊗ a∗ᾱhRS)∆(b∗)

=
∑

[α]∈�\I(�)

κ−1
ᾱ [id⊗ (a∗αhRS)∆(b)]] = (b ∗ a)],

since a∗αhRS = S(aα)hL. �

We can finally make the following definition. Recall that we have cc(�/�) ∩ cc(�\�) =
cc(�\�′/�) where �′ is the commensurator of � in �, and �′ = � if (�,�) is a Hecke pair.

Definition 3.24. Let � be a quantum subgroup of a discrete quantum group �. The
Hecke algebra associated with (�,�) is H(�,�) := cc(�/�) ∩ cc(�\�) equipped with the
convolution product ∗ and the involution · ].

Remark 3.25. Note that H(�,�) depends only on the pair (�′,�), where �′ is the com-
mensurator of � in �. The algebra H(�,�) is also equipped with more structure coming
from the ambient space c(�): the “pointwise” product and involution, the scaling and mod-
ular groups (τt)t∈R, (σRt )t∈R, (σLt )t∈R, see Lemma 3.1. Moreover all these one-parameter
groups act by automorphisms of H(�,�), which can be shown similarly as it was done for
(σRt )t∈R in the last proposition.

Example 3.26. Let us mention some “trivial” examples where H(�,�) is non-trivial. We
will investigate more interesting examples in subsection 3.3. If � is finite or of finite index
in �, but different from �, then obviously � = �′ and Cp� ( H(�,�). If � is finite and �
infinite, dim(H(�,�)) = +∞.

Consider now the case when � is normal in �, i.e. `∞(�/�) = `∞(�\�). Then ∆(`∞(�/�))
⊂ `∞(�/�)⊗̄`∞(�/�), so that we have a discrete quantum group �/� underlying the quan-
tum quotient space. The dual H of �/� identifies with a normal subgroup of the compact
quantum group G dual to �, with restriction morphism ρ : Cu(G)→ Cu(H), such that given
α ∈ Corep(�) we have α ∈ Corep(�) iff (id⊗ρ)(α) is trivial — or, equivalently, contains the
1-dimensional corepresentation. It is then easy to check that α ∼ β iff 11 ⊂ (id⊗ ρ)(ᾱ⊗ β)
iff 11 ⊂ (id ⊗ ρ)(β ⊗ ᾱ) iff α v β. In particular I(�)/� = �\I(�)/� = �\I(�) and
L(JαK) = R(JαK) = 1 for all α ∈ I(�), so that (�,�) is a Hecke pair.

By uniqueness and the invariance result of Proposition 3.21, the functional µ, ν of Def-
inition 3.13 are the left, resp. right Haar weights of �/�, normalized by the condition
µ(p�) = ν(p�) = 1. Moreover, from the formula a ∗ b = (id⊗ S(b)µ)∆(a) we recognize the
usual convolution product of the discrete quantum group algebra `∞(�/�) (or its oppo-
site, depending on conventions), transported from the product of C[�/�] via the Fourier
transform.

3.2.2. Hecke operators. Now we want to identify the Hecke algebra with an algebra of
equivariant endomorphisms of cc(�/�). We turn cc(�/�) into a right C[�]-module via the
formula a · x = (x ⊗ id)∆(a), where a ∈ cc(�/�), x ∈ C[�] and we view C[�] as linear
subspace of cc(�)∗ via evaluation. By definition, a linear map F : cc(�/�) → cc(�/�) is
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�-equivariant iff it is C[�]-linear, and we write End�(cc(�/�)) for the space of �-equivariant
linear endomorphisms of cc(�/�).

Restricting the action of C[�] to C[�] we obtain the associated space of fixed points
cc(�/�)� = {a ∈ cc(�/�) | (p� ⊗ 1)∆(a) = p� ⊗ a} = {a ∈ cc(�/�) | a · x = ε̂(x)a} =
cc(�/�) ∩ c(�\�).

Proposition 3.27. Let � be a quantum subgroup of �. The map ev� : F 7→ f := F (p�)
defines an antimultiplicative isomorphism from End�(cc(�/�)) to cc(�/�)�, with inverse
bijection T given by T (f)(a) = a ∗ f , f ∈ cc(�/�)�, a ∈ cc(�/�).

Proof. Let F ∈ End�(cc(�/�)). For all g ∈ cc(�/�) and α ∈ I(�) we have (pα ⊗ id)∆(g) ∈
cc(�) ⊗ cc(�/�) and equivariance of F means that we have (id ⊗ F )((pα ⊗ id)∆(g)) =
(pα ⊗ id)∆(F (g)). Applying this to g = p� we obtain (id⊗F )((pα⊗ id)∆(p�)) = (pα ⊗ id)
∆(f). Since p� is also left invariant under �, for α = λ ∈ I(�) we obtain (pλ ⊗ id)∆(f) =
(id ⊗ F )(pλ ⊗ p�) = pλ ⊗ f and we have indeed f ∈ cc(�/�)�. The same equivariance
formula can also be written F ((aαhR ⊗ id)∆(p�)) = (aαhR ⊗ id)∆(f) for any a ∈ c(�) and
α ∈ I(�).

Moreover, take a ∈ p[α]cc(�/�). Using Theorem 3.10 and the previous equivariance
formula we can write

F (a) = κ−1
α F ((S−1(aα)hR ⊗ id)∆(p�))

= κ−1
α (S−1(aα)hR ⊗ id)∆(f) = a ∗ f = T (f)(a).

This shows that T is a left inverse of ev�.
Conversely starting from f ∈ cc(�/�)� we can consider T (f) : a 7→ a ∗ f . We already

noticed at Proposition 3.23 that T (f)(a) ∈ cc(�/�), and after Definition 3.19 that T (f)
is equivariant with respect to the left �-action induced by ∆. Since p� is the unit of
the convolution product, T is a right inverse of ev�. Finally T is antimultiplicative by
associativity of the convolution product. �

We now use the prehilbertian structure on cc(�/�) obtained from the functional µ and
consider the corresponding subspace of adjointable operators in End�(cc(�/�)). Note that
the formula (3.3) for (a | b) given in Definition 3.13 also makes sense for a ∈ cc(�/�),
b ∈ c(�/�), or for a ∈ c(�/�), b ∈ cc(�/�). We use this in the following proposition. Note
also that ‖p�‖�/� = 1.

Proposition 3.28. For a, b ∈ cc(�/�) and c ∈ c(�/�) ∩ c(�\�) we have (a | b ∗ c) =
(a ∗ c] | b).



20 ADAM SKALSKI, ROLAND VERGNIOUX, AND CHRISTIAN VOIGT

Proof. We compute, using (3.3) and (3.5):

(a ∗ c] | b) =
∑
[β]

κ−1
β (bβhL)((a ∗ c])∗) =

∑
[α],[β]

κ−1
α κ−1

β (S−1(aα)hR ⊗ bβhL)∆(c]∗)

=
∑

[α],[β]

κ−1
α κ−1

β (bβhL ⊗ S−1(aα)hR)(S−1 ⊗ S−1)∆(c)

=
∑

[α],[β]

κ−1
α κ−1

β (hRS(bβ)⊗ S2(a∗α)hL)∆(c) =
∑
[α]

κ−1
α (hLa

∗
α)(b ∗ c) = (a | b ∗ c).

We also used the identities S−1(aα)hR ◦ S−1 = S2(a∗α)hL = hLa
∗
α which are easy to check.

�

In the next theorem, which offers an alternative description of the Hecke algebra, we
write End′(cc(�/�)) ⊂ End(cc(�/�)) for the subspace of adjointable maps, i.e. of maps T
for which there exists S ∈ End(cc(�/�)) satisfying (a | Tb) = (Sa | b) for all a, b ∈ cc(�/�).

Theorem 3.29. Let f ∈ cc(�/�)�. Then we have T (f) ∈ End′(cc(�/�)) iff f ∈ cc(�/�) ∩
cc(�\�). As a result, T implements an antimultiplicative ∗-isomorphism between H(�,�)
and End′�(cc(�/�)). If (�,�) is a Hecke pair, all maps in End�(cc(�/�)) are adjointable.

Proof. In view of Proposition 3.27 it essentially suffices to understand the relevant ∗-struc-
tures. By Proposition 3.28, if T (f) is adjointable then its adjoint is S : a 7→ a ∗ f ].
Taking a = p� we obtain f ] ∈ cc(�/�), hence f ∈ cc(�\�). The converse implication
and the statement about T are then clear. If (�,�) is a Hecke pair, we have cc(�/�)� =
cc(�/�) ∩ cc(�\�). �

Now we investigate the question whether Hecke operators extend to bounded operators
on `2(�/�), the completion of cc(�/�) with respect to the norm ‖ · ‖�/� arising from Defi-
nition 3.13. In the setting of discrete quantum groups we prove in Theorem 3.32 that this
is equivalent to a combinatorial property of the constants κα introduced in Definition 3.30
below. Surprisingly we could not prove directly that this property always hold for Hecke
pairs. However we will show later in Section 4.3, using the Schlichting completion, that
this is indeed the case, by showing that Hecke operators are always bounded.

Definition 3.30. Given the inclusion � ⊂ � and β ∈ I(�) we say that β satisfies property
(RT) if there exists a constant Cβ such that κγ ≤ Cβκα for all α, γ ∈ I(�) such that
γ ⊂ α ⊗ β. We say that the inclusion � ⊂ � satisfies property (RT) if the property (RT)
holds for each β ∈ I(�′), where �′ denotes the commensurator of � in �.

Property (RT) is of course always verified in the classical case since then κα = 1 for
all α ∈ I(�). In general it does not hold for all corepresentations, as shown by the (non-
commensurated) Example 3.15.

Lemma 3.31. For [α] ∈ I(�)/�, [β] ∈ �\I(�) we have

(3.9) p[α] ∗ p[β] =
dimq(β)

κβ̄

∑
δ∈I(�)

dimq(δ ⊗ β̄)[α]

dimq(δ)
pδ,
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where (δ ⊗ β̄)[α] denotes the span of the subobjects of δ ⊗ β̄ isomorphic to elements of [α].

Proof. Note first that in the proof of Lemma 3.9 we showed that for each γ, δ, µ ∈ I(�) we
have

(hRpγ ⊗ pδ)∆(pµ) = dimq(γ) dimq(µ) dimq(δ)
−1cγ,δµ pδ,

where cγ,δµ = dim(Hom(µ, γ ⊗ δ)). Applying the antipode to this formula yields

(pδ ⊗ hLpγ)∆(pµ) = dimq(γ) dimq(µ) dimq(δ)
−1cγ̄,δ̄µ̄ pδ.

Thus for each [α] ∈ I(�)/�, [β] ∈ �\I(�) we obtain

p[α] ∗ p[β] = κ−1
α κ−1

β̄
(hRpᾱ ⊗ id⊗ hLpβ̄)∆2(p�)

= κ−1
α κ−1

β̄

∑
δ∈I(�),λ∈I(�)(hRpᾱ ⊗ pδ ⊗ hLpβ̄)∆2(pλ)

= κ−1
α κ−1

β̄

∑
δ∈I(�),λ∈I(�),γ∈I(�)(hRpᾱ ⊗ pδ) ◦∆ ◦ (pγ ⊗ hLpβ̄)(∆(pλ))

= κ−1
α κ−1

β̄

∑
δ,λ,γ dimq(ᾱ) dimq(δ)

−1cᾱ,δγ dimq(β̄) dimq(λ)cβ,γ̄
λ̄
pδ

=
dimq(α)

κα

dimq(β)

κβ̄

∑
δ∈I(�)

dimq(ᾱ⊗ δ ⊗ β̄)�

dimq(δ)
pδ.

We used the identity
∑

γ∈I(�) c
ᾱ,δ
γ cβ,γ̄

λ̄
=
∑

γ∈I(�) c
ᾱ,δ
γ cγ,β̄λ = dim Hom(λ, ᾱ ⊗ δ ⊗ β̄), so that

adding the quantum dimensions dimq(λ) over λ ∈ I(�) with these multiplicities yields
dimq(ᾱ⊗ δ ⊗ β̄)�.

Notice that the term corresponding to δ vanishes unless δ ⊂ α ⊗ λ ⊗ β for some λ ∈
I(�). Moreover, decomposing into irreducibles δ ⊗ β̄ =

⊕
cδ,β̄α′ α

′ we can write, using
Corollary 3.12:

dimq(ᾱ⊗ δ ⊗ β̄)� =
∑

α′c
δ,β̄
α′ dimq(ᾱ⊗ α′)�

=
∑

α′∈[α]c
δ,β̄
α′ κα

dimq(α
′)

dimq(α)
=

κα
dimq(α)

dimq(δ ⊗ β̄)[α]

and the formula follows. �

Theorem 3.32. Let � ⊂ � be an inclusion of discrete quantum groups. The operator T (b)
is bounded with respect to ‖ · ‖�/� for every b ∈ H(�,�) iff the inclusion � ⊂ � satisfies
property (RT).

Proof. Assume first that T (b) is bounded with respect to ‖ · ‖�/� for all b ∈ H(�,�). In

particular T (pτ ) is bounded for every τ ∈ �\I(�′)/�. Consider ξ[α] = κ
1/2
α p[α]/ dimq(α),

which has norm 1 with respect to ‖ · ‖�/�. By definition of the scalar product, and writing
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τ as a disjoint union of finitely many left classes [β] we have

(ξ[γ] | ξ[α] ∗ pτ ) =
κ

1/2
α κ

1/2
γ

dimq(α) dimq(γ)
(p[γ]|p[α] ∗ pτ ) =

κ
1/2
α κ

1/2
γ

dimq(α) dimq(γ)
κ−1
γ hL(pγ(p[α] ∗ pτ ))

=
κ

1/2
α κ

1/2
γ

dimq(α) dimq(γ)
κ−1
γ

∑
[β]⊂τ

hL(pγ(p[α] ∗ p[β])).

Using (3.9) in the preceding lemma we can further compute:

(ξ[γ] | ξ[α] ∗ pτ ) =
∑
[β]⊂τ

κ
1/2
α κ

1/2
γ

dimq(α) dimq(γ)
κ−1
γ

dimq(β)

κβ̄

dimq(γ ⊗ β̄)[α]

dimq(γ)
hL(pγ)

=
∑
[β]⊂τ

dimq(β)

κβ̄

κ
1/2
α

dimq(α)

dimq(γ ⊗ β̄)[α]

κ
1/2
γ

.

Finally we decompose (γ ⊗ β̄) into irreducible subobjects α′ and select the ones in [α].
Using Corollary 3.12 this yields

(ξ[γ] | ξ[α] ∗ pτ ) =
∑
[β]⊂τ

dimq(β)

κβ̄

∑
α′∈[α]

cγ,β̄α′
κ

1/2
α

dimq(α)

dimq(α
′)

κ
1/2
γ

=
∑
[β]⊂τ

dimq(β)

κβ̄

∑
α′∈[α]

cγ,β̄α′
κ

1/2
α′

κ
1/2
γ

.

As a result we have, for any α′, γ ∈ I(�) and β ∈ I(�′) such that α′ ⊂ γ ⊗ β̄:

κα′

κγ
≤
κ2
β̄
‖T (pJβK)‖2

dimq(β)2
.

This shows the existence of the constants Cβ and the direct implication.
Conversely, assume that (RT) holds. Taking b ∈ cc(�\�′/�), we can assume that b ∈

pτcc(�\�′/�) with τ ∈ �\I(�′)/�, and we then have a decomposition b =
∑

[β]⊂τ p[β]b with

L(τ) terms, where [β] ∈ �\I(�). We first fix classes [α], [γ] ∈ I(�)/�. For a ∈ p[α]cc(�/�),
c ∈ p[γ]cc(�/�) we have

(c | a ∗ b) =
∑
[β]⊂τ

κ−1
β̄

(c | (id⊗ S(bβ)hL)∆(a))

=
∑

[β]⊂τ,α′∈[α]

κ−1
β̄
κ−1
γ (hLc

∗
γ ⊗ S(bβ)hL)∆(aα′).

The sum is in fact finite since its terms vanish unless α′ ⊂ γ ⊗ β̄.
Now we use the case when � is the trivial subgroup, denoting ‖ · ‖� the hermitian norm

on cc(�) and T� the homomorphism from cc(�) to End(cc(�)). We know that T�(d) extends
to a bounded operator on `2(�) for any d ∈ cc(�), because it is an operator from the right
regular representation of �. Fix a choice of representatives β for the classes [β] and put
M = max[β]⊂τ ‖T�(bβ)‖ (so that M might depend on the choice made). We then have

|(hLc∗γ ⊗ S(bβ)hL)∆(aα′)| = |(cγ | T�(bβ)(aα′))�| ≤M‖cγ‖�‖aα′‖�.
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We have moreover ‖cγ‖� =
√
κγ‖c‖�/�, ‖aα′‖� =

√
κα′‖a‖�/� by definition.

As a result we can write:

|(c | a ∗ b)| ≤M
∑
[β]⊂τ

∑
α′∈[α],α′⊂γ⊗β̄

κ−1
β̄
κ−1/2
γ κ

1/2
α′ ‖c‖�/�‖a‖�/� ≤ K‖c‖�/�‖a‖�/�,

where K = M
∑

[β]⊂τ κ
−1
β̄
C

1/2

β̄
dim(β)2 only depends on b (and not on [α], [γ], a, c). Here

we used property (RT) and the fact from Lemma 2.1 that γ ⊗ β̄ has at most dim(β)2

irreducible subobjects.
Let use write [γ]#[α] if there exist c ∈ p[γ]cc(�/�), a ∈ p[α]cc(�/�) such that (c | a∗b) 6= 0.

The arguments above also show that [γ]#[α] implies γ ⊂ α⊗ λ⊗ β for some λ ∈ I(�) and
β ∈ τ . Writing τ as a disjoint union of R(τ) classes [βi] ∈ I(�)/�, this inclusion implies
γ ⊂ α⊗βi⊗µ for some i and µ ∈ I(�). Since α⊗βi contains at most dim(βi)

2 irreducibles,
this shows that, once [α] is fixed, we can have [γ]#[α] for at most

∑
dim(βi)

2 classes [γ].
Similarly, since (c | a ∗ b) = (c ∗ b] | a), if [γ] is fixed, we can have [γ]#[α] for at most∑

dim(β′j)
2 classes [α], where we have now written τ as a disjoint union of L(τ) classes

[β′j] ∈ �\I(�). Let us denote by N the maximum of these two sums, which depends only
on τ .

Finally we can use Cauchy-Schwarz to write, for any a, b ∈ cc(�/�):

|(c | a ∗ b)| ≤
∑

[γ]#[α]

|(p[γ]c | (p[α]a) ∗ b)| ≤ K
∑

[γ]#[α]

‖p[γ]c‖�/�‖p[α]a‖�/�

≤ K
( ∑

[γ]#[α]

‖p[γ]c‖2
�/�

)1/2( ∑
[γ]#[α]

‖p[α]a‖2
�/�

)1/2

≤ KN‖c‖�/�‖a‖�/�.

This shows that T (b) is bounded with ‖T (b)‖ ≤ KN . �

3.2.3. Modular structure.

Definition 3.33. The canonical state on H(�,�) is given by the formula

ω(f) := ε(f) = (p� | T (f)p�), f ∈ H(�,�).

Since the sesquilinear form ( · | · ) is positive-definite, ω is faithful, i.e. ω(f ] ∗ f) = 0
implies f = 0. To investigate the modular properties of ω we first construct a quantum
analogue of the classical modular function. We consider the restrictions of the functionals µ,
ν introduced in Definition 3.13 to cc(�\�′/�). These forms are faithful by Proposition 3.5,
and so we can make the following definition.

Definition 3.34. The modular element associated with (�,�) is the unique element ∇ ∈
c(�\�′/�) such that ν(a) = µ(∇a) for all a ∈ cc(�\�′/�).

More concretely, fix α ∈ I(�′). Since (a 7→ pαa) is faithful on pJαKc(�\�/�) we can
consider the positive linear forms µα, να defined on the finite dimensional C∗-algebra
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pαc(�\�/�) by the following identities, for every a ∈ pJαKc(�\�/�):

µα(aα) =
∑
{κ−1

δ hL(aδ) | [δ] ⊂ JαK, [δ] ∈ I(�)/�},

να(aα) =
∑
{κ−1

δ̄
hR(aδ) | [δ] ⊂ JαK, [δ] ∈ �\I(�)}.

Then ∇ is characterized by the identities να(aα) = µα(∇αaα), a ∈ pJαKc(�\�/�), JαK ∈
�\I(�′)/�. Note that, according to the next lemma, we also have ν(a) = µ(a∇). Naturally
∇ = ∇∗.

Lemma 3.35. We have p�∇ = p�, σRt (∇) = ∇ for any t ∈ R, S(∇) = ∇−1 = S−1(∇).

Proof. Since hR and hL are both σRt = σL−t invariant, this is also the case of µα and να,
hence we have να(a) = να(σR−t(a)) = µα(∇ασ

R
−t(a)) = µα(σRt (∇α)a) and we conclude by

uniqueness that σRt (∇) = ∇. This, together with the definition of µ and the fact that
(σRt )t∈R is the modular automorphism group for hR, also implies that µ(a∇) = µ(∇a)
for all a ∈ cc(�\�′/�). Similarly, noting that νS = µ = νS−1 we can write ν(S(∇)a) =
µ(S−1(a)∇) = µ(∇S−1(a)) = ν(S−1(a)) = µ(a) and we conclude that S(∇) = ∇−1. We
proceed in the same way with S−1. �

The next result shows that the operator ∇ indeed plays the role of the modular operator
for the canonical state on the Hecke algebra (or rather its relevant von Neumann algebraic
completion).

Theorem 3.36. The maps θt : a 7→ σRt (∇ita) = ∇itσRt (a), t ∈ R, a ∈ H(�,�) define a
1-parameter group of ∗-automorphisms of H(�,�) and ω is a θ-KMS1 state.

Proof. Using the fact that ε is the counit and equalities (3.5), (3.7) we obtain the following
expressions:

ω(a ∗ b) =
∑

[α]∈I(�)/�

κ−1
α hR(S(aα)b) =

∑
[β]∈�\I(�)

κ−1
β̄
hL(aS(bβ)).

We can then compute, for a, b ∈ cc(�\�′/�):

ω(a ∗ b) =
∑

[α]∈I(�)/�

κ−1
α hL(aαS(bᾱ)) =

∑
JαK∈�\�/�

µα(aαS(bᾱ))

=
∑

JαK∈�\�/�

να(∇−1
α aαS(bᾱ)) =

∑
[α]∈�\I(�)

κ−1
ᾱ hR(∇−1

α aαS(bᾱ))

=
∑

[α]∈I(�)/�

κ−1
α hR(S(bα)σRi (∇−1a)) = ω(b ∗ σRi (∇−1a)).

We also have the following variant of the last step of the computation: since hR is
σR-invariant and σR commutes with S, it is easy to check that hR(S(bα)σRi (∇−1a)) =
hR(S(∇σR−i(bα))a), and this yields ω(a ∗ b) = ω((∇σR−i(b)) ∗ a).
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From these properties we first deduce:

ω(a ∗ b ∗ c) = ω(b ∗ c ∗ σRi (∇−1a)) = ω(c ∗ σRi (∇−1a) ∗ σRi (∇−1b))

= ω(∇σR−i(σRi (∇−1a) ∗ σRi (∇−1b)) ∗ c).
By faithfulness of ω this yields σRi (∇−1a) ∗ σRi (∇−1b) = σRi (∇−1(a ∗ b)), hence by Proposi-
tion 3.23 we have (∇−1a)∗ (∇−1b) = ∇−1(a∗ b). This implies (∇ka)∗ (∇kb) = ∇k(a∗ b) for
all k ∈ Z and, by the usual argument, (∇za) ∗ (∇zb) = ∇z(a ∗ b) for all z ∈ C. It follows
that the maps θt are multiplicative for the convolution product. They are also compatible
with the involution since σRt S = SσRt and (∇ita)] = ∇it]a] = ∇ita] for real t, using the
property S(∇−1) = ∇. �

Corollary 3.37. We have ∆(∇) = ∇⊗∇.

Proof. We use the property (∇a) ∗ (∇b) = ∇(a ∗ b) for a, b ∈ cc(�\�′/�), established in
the proof of the previous proposition. Since S(∇) = ∇−1 we can write

∇−1(∇a ∗ ∇b) =
∑

κ−1
α (hRS(∇aα)⊗∇−1)∆(∇b)

=
∑

κ−1
α (hRS(aα)⊗ id)[(∇−1 ⊗∇−1)∆(∇)∆(b)]

= (a ∗ b) =
∑

κ−1
α (hRS(aα)⊗ id)[∆(b)].

Since ∆(c(�\�/�)) ⊂M(cc(�\�)⊗ cc(�/�)) and hRpᾱ is faithful on p[ᾱ]cc(�\�) by Propo-
sition 3.5, we can conclude that (∇−1 ⊗∇−1)∆(∇) = 1⊗ 1. �

We shall now give an explicit formula for the modular function∇ in terms of the structure
of the inclusion � ⊂ �. This will involve quantum analogues L̃α, R̃α of the counting
functions L, R which arise from the interplay between the modular structure of the Haar
weight hR and the structure of the quantum quotient space �\�/�.

For every α ∈ I(�), we have a unique hL-preserving (resp. hR-preserving) conditional
expectation from pαc(�) = B(Hα) onto the subalgebra pαc(�\�/�). We consider the
following related maps:

Definition 3.38. We denote by EL
α (resp. ER

α ) the unique map c(�)→ pJαKc(�\�/�) such
that hL(pαE

L
α (a)b) = hL(pαab) (resp. hR(pαE

R
α (a)b) = hR(pαab)) for all b ∈ c(�\�/�),

a ∈ c(�).

In the classical case, EL
α (f) is the constant function on JαK, equal to the value f(α). Let

us record the following property of these maps in connection with Woronowicz’ modular
element.

Lemma 3.39. We have ER
α (F−2) = EL

α (F 2)−1.

Proof. Recall that hR(a) = hL(F 2a) for all a ∈ cc(�). In particular we have, for a ∈
cc(�\�/�) and α ∈ I(�):

hR(aα) = hL(F 2aα) = hL(EL
α (F 2)aα) = hR(F−2EL

α (F 2)aα) = hR(ER
α (F−2)EL

α (F 2)aα),

since EL
α (F 2)aα ∈ pαcc(�\�/�). As hR is faithful on pαcc(�\�/�), we can infer that

pαE
R
α (F−2) = (pαE

L
α (F 2))−1 and we conclude by Proposition 3.5. �
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Definition 3.40. Fix α ∈ I(�′) and choose elements δi ∼ α (resp. εj v α) such that
JαK is the disjoint union of the classes [δi] ∈ �\I(�) (resp. [εj] ∈ I(�)/�). We define the
following elements of pJαKcc(�\�/�):

L̃α =
∑
i

dimq(δi)
2

κδ̄i
EL
δi

(F 2), R̃α =
∑
j

dimq(εj)
2

κεj
ER
εj

(F−2).

Remark 3.41. Note that we have F ∈ c(�\�/�) iff � is unimodular (i.e. F |� = I), since
∆(F ) = F ⊗ F . In this case we have EL

α (F t) = ER
α (F t) = pJαKF

t for all t ∈ R, and hence,
writing FJαK = pJαKF :

L̃α =
(∑

i
dimq(δi)

2

κδ̄i

)
F 2

JαK, R̃α =
(∑

j
dimq(εj)

2

κεj

)
F−2

JαK.

Since dimq(δi)
2/κδ̄i only depends on the class [δi] ∈ �\I(�) we can drop the constraint

δi ∼ α in the definition of L̃α and we see in particular that L̃α, R̃α only depend on JαK
in this case. If we have moreover κδ = κδ̄ for all δ ∈ I(�), the terms dimq(δi)

2/κδ̄i only
depend on JδiK = JαK and hence we have

L̃α = L(JαK) κ−1
α dimq(α)2F 2

JαK, R̃α = R(JαK) κ−1
α dimq(α)2F−2

JαK.

On the other hand let us consider the case when pJαKcc(�\�/�) = CpJαK. Then we have
EL
α (F 2) = pJαK = ER

α (F−2) (as for example hL(F 2
α) = hL(pα)), so that

L̃α =
(∑

i
dimq(δi)

2

κδ̄i

)
pJαK, R̃α =

(∑
j

dimq(εj)
2

κεj

)
pJαK,

with the same simplification as above if κδ = κδ̄ for all δ.

Proposition 3.42. We have ∇α = pαR̃
−1
α EL

α (F 2)−1L̃α. In particular, if � is unimodular

and κδ = κδ̄ for all δ ∈ I(�), we obtain the “semi-classical” formula ∇α = L(JαK)
R(JαK)F

2
α.

Proof. Take α ∈ I(�) and a ∈ pJαKc(�\�/�). We choose elements εj ∈ JαK such that JαK is
the disjoint union of the classes [εj] ∈ I(�)/� and εj v α for all i.

By Corollary 3.11 we have

κ−1
ε̄j
hL(aεj) = κ−1

ε̄j
hR(pεjF

−2a) = κ−1
ε̄j
hR(pεjE

R
εj

(F−2)a) = κ−1
ᾱ hR(pαE

R
εj

(F−2)a).

Recall moreover that we have κε̄/κᾱ = (dimq(ε)/ dimq(α))2 when ε v α. Hence we can
write

µα(aα) =
∑

jκ
−1
εj
hL(aεj) =

∑
j

κε̄j
κεj

κ−1
ε̄j
hL(aεj) =

∑
j

κε̄j
κεj

κ−1
ᾱ hR(ER

εj
(F−2)aα)

= dimq(α)−2hR(R̃αaα) = dimq(α)−2hL(F 2R̃αaα) = dimq(α)−2hL(EL
α (F 2)R̃αaα).

We proceed similarly on the other side with classes [δi] ∈ �\I(�) and δi ∼ α :

να(aα) =
∑

i

κδi
κδ̄i

κ−1
δi
hR(aδi) =

∑
i

κδi
κδ̄i

κ−1
δi
hL(F 2aδi) =

∑
i

κδi
κδ̄i

κ−1
δi
hL(EL

δi
(F 2)aδi)

=
∑

i

κδi
κδ̄i

κ−1
α hL(EL

δi
(F 2)aα) = dimq(α)−2hL(L̃αaα).
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This yields the result by definition of ∇. �

3.3. Examples: HNN extensions. Let �0 be a discrete quantum group with two quan-
tum subgroups �ε ⊂ �0 (ε = ±1). Following [Fim13], we start with an isomorphism be-
tween the two quantum subgroups, described via a Hopf ∗-algebra isomorphism θ : C[�1]→
C[�−1] and we form � = HNN(�0, θ). Recall that C[�] is generated by C[�0] and a group-
like unitary w such that wεbw−ε = θε(b) for b ∈ C[�ε]. We denote by Eε : C[�0] → C[�ε]
the canonical conditional expectations. The algebra C[�] is the direct sum of the subspaces

C[�]n = {x0w
ε1x1 · · ·wεnxn | xi ∈ C[�0], εi = ±1, Eεi(xi) = 0 whenever εi+1 6= εi}.

The subspaces C[�]n, n ≥ 1 span the kernel of the canonical conditional expectation
E0 : C[�]→ C[�0] = C[�]0 and the Haar state of � is h = h0 ◦E0 — see [Fim13]. It follows
in particular that I(�) is partitioned into the subsets

I(�)n = {α ⊂ α0 ⊗ wε1 ⊗ α1 ⊗ · · · ⊗ wεn ⊗ αn |
αi ∈ I(�0), εi = ±1, αi /∈ I(�εi) whenever εi+1 6= εi}.

Proposition 3.43. Assume that the quantum subgroups �ε have finite index in �0 and at
least one of them is distinct from �0. Then �0 is commensurated in �, not normal, and of
infinite index.

Proof. Write I(�0)/�ε = {[γε,0], . . . , [γε,p]} with γε,0 = 1. Then any α ∈ I(�)n is contained
in a representation γ−ε1,k1⊗wε1⊗γ−ε2,k2⊗wε2⊗· · ·⊗wεn⊗αn with ki 6= 0 if εi 6= εi+1. Indeed,
starting from α ⊂ α0⊗wε1 ⊗α1⊗ · · · ⊗wεn ⊗αn as previously, write α0 ⊂ γ−ε1,k1 ⊗ λ with
λ ∈ I(�−ε1). Observe moreover that λ⊗ wε1 ' wε1 ⊗ θ−ε1(λ) and decompose θ−ε1(λ)⊗ α1

into irreducible subobjects α′1. Since α is irreducible it appears as a subobject of one of
the corresponding corepresentations γ−ε1,k1 ⊗wε1 ⊗α′1⊗wε2 · · ·⊗wεn ⊗αn. Moreover since
θ−ε1(λ) ∈ I(�ε1) we have α1 /∈ I(�ε1) ⇒ α′1 /∈ I(�ε1). Iterating the procedure we see that
α′1 can also be chosen among the representatives γ−ε2,k etc.

In particular it follows that I(�)n/�0 — and similarly �0\I(�)n — is finite. Since I(�)n
is clearly saturated with respect to the equivalence relations ∼, v relative to �0, this shows
that �0 is commensurated in �. It is never of finite index in � since the subsets I(�)n,
n ≥ 1, are non empty. Finally, assuming e.g. �1 6= �0 and taking α ∈ I(�0) \ I(�1), then
we get that w⊗α⊗w∗ belongs to I(�)2. If we had c(�/�0) = c(�0\�), then w⊗α would be
equivalent to a corepresentation of the form β⊗w with β ∈ I(�0), but then w⊗α⊗w∗ ' β
would belong to I(�)0. Hence �0 is not normal in �. �

Denote by N(� y �/�) the weak closure of {(id⊗ ϕ)∆(a) | a ∈ c0(�/�), ϕ ∈ c0(�/�)∗}
in `∞(�). Recall from [KKSV] that the action of � on �/� is called faithful if we have
N(� y �/�) = `∞(�).

Lemma 3.44. Let � ⊂ � be a quantum subgroup. Assume that for every non-trivial
α ∈ I(�) we can find γα ∈ I(�) such that no subobjects of α⊗ γα belong to [γα] ∈ I(�)/�.
Then the action of � on �/� is faithful.
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Proof. We denote p0 the minimal central projection pα corresponding to the trivial corep-
resentation α = 1. It is also the central support of the counit ε of cc(�). The condi-
tion on α, γα can also be written (pα ⊗ pγα)∆(p[γα]) = 0. On the other hand we have
(p0 ⊗ pγα)∆(p[γα]) = (p0ε ⊗ pγα)∆(p[γα]) = p0 ⊗ pγαp[γα] = p0 ⊗ pγα . For α 6= 1 we denote
xα = dimq(γα)−2(id ⊗ hLpγα)∆(p[γα]). We have pαxα = 0, p0xα = p0 and ‖xα‖ ≤ 1 since
dimq(γ)−2hLpγ is a state. Introduce a total order on I(�) and put yF =

∏
α∈F xα for

F ⊂ I(�) finite, 1 /∈ F . Then the net (yF )F converges to p0 in the weak topology. Indeed
the elements of the net are uniformly bounded in norm, and for F ⊂ I(�) finite, 1 /∈ F , we
have p0yF = p0 and pβyF = 0 as soon as β ∈ F . Since xα ∈ N(� y �/�) for all α ∈ I(�),
α 6= 1, it follows that p0 ∈ N(� y �/�), which implies N(� y �/�) = `∞(�) by [KKSV,
Prop. 2.10]. �

We still denote by θ : I(�1) → I(�−1) the map induced by θ on irreducible representa-
tions. We define by induction Dom θk ⊂ I(�0), for k ∈ Z, by putting Dom θ0 = I(�0) and
Dom θ(n+1)ε = {α ∈ Dom θnε | θnε(α) ∈ I(�ε)} for n ∈ N, ε = ±1.

Proposition 3.45. Assume that
⋂
k∈Z Dom θk = {1}. Then the action of � on �/�0 is

faithful.

Proof. We apply Lemma 3.44. Take α ∈ I(�) non-trivial. If α /∈ I(�0), we can just take
γ = 1. Hence we can assume α ∈ �0, α 6= 1. By assumption there exists ε ∈ {±1},
n ∈ N∗ such that α ∈ Dom θ(n−1)ε but α /∈ Dom θnε. We take γα = w−nε. We have
then α ⊗ w−nε = w−(n−1)ε ⊗ θ(n−1)ε(α) ⊗ w−ε, which is irreducible and not equivalent to
w−nε⊗ β with β ∈ I(�0) — indeed β is in I(�)0 but wε⊗ θ(n−1)ε(α)⊗w−ε is in I(�)2 since
θ(n−1)ε(α) /∈ I(�ε). �

Note that, in the classical case, if K is a central subgroup of Γ0 contained in
⋂
k∈Z Dom θk,

then it acts trivially on Γ/Γ0.
Now we compute the modular function ∇ on generators, using Proposition 3.42. Clearly
∇α = pα for α ∈ I(�0) ⊂ I(�). The value at w is given as follows in terms of �0 and �ε:

Proposition 3.46. Assume that the quantum subgroups �ε have finite index in �0 and de-
note I(�0)/�−1 = {[ε0], . . . , [εp]}, �1\I(�) = {[δ0], . . . , [δq]}. Then we have ∇w = pwR̃

−1
w L̃w

with

L̃w =

q∑
i=1

dimq(δi ⊗ δ̄i)
dimq(δi ⊗ δ̄i)�1

pJwK and R̃w =

p∑
j=1

dimq(ε̄j ⊗ εj)
dimq(ε̄j ⊗ εj)�−1

pJwK.

Proof. We have JwK =
⋃
j[εj ⊗w] and εj ⊗w v w, see the proof of Proposition 3.43. Note

that εj⊗w is irreducible (whereas εj⊗w⊗α needs not to be): indeed εj⊗w⊗w∗⊗ε̄j = εj⊗ε̄j
contains the trivial representation only once. Moreover we claim that if k 6= l then the
classes [εk ⊗ w], [εl ⊗ w] are distinct, i.e. w∗ ⊗ ε̄l ⊗ εk ⊗ w has no subobject in I(�0).
Indeed by definition ε̄l ⊗ εk has no subobject in �−1, hence the irreducible subobjects of
w∗ ⊗ ε̄l ⊗ εk ⊗ w belong to I(�)2.

Then we can apply the definition of L̃w, R̃w and Proposition 3.42. Note that we are in
the case when pJwKc(�0\�/�0) = CpJwK since dim(w) = 1, see Remark 3.41. For α = ε⊗w,
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ε ∈ I(�0) as above, we have κα = dimq(w
∗ ⊗ ε̄ ⊗ ε ⊗ w)�0 = dimq(ε̄ ⊗ ε)�−1 — whereas

κᾱ = dimq(ε⊗ ε̄) = dimq(ε̄⊗ ε). This gives the formula for R̃w, and the one for L̃w follows
by symmetry. �

Example 3.47. One can construct quantum examples as follows. Take two finite quantum
groups Σ±1, for instance duals of classical finite groups. Form the restricted product
�0 =

∏′
k∈Z∗ Σsgn(k), which is the dual of a profinite group if Σ±1 is the dual of a finite

classical group. If one group Σε is not classical, �0 is a unimodular non-classical discrete
quantum group. Consider the finite index subgroups �ε =

∏′
k∈Z∗,k 6=ε Σsgn(k). We have

evident isomorphisms �ε ' � obtained by shifting the copies of Σε towards k = 0 in the
restricted product. We denote by θ : C[�1] → C[�−1] the corresponding isomorphism.

Denoting Iε = Corep(Σε), we have natural identifications I(�0) '
∏′

k Isgn(k), �ε\I(�0) =

I(�0)/�ε ' Iε. For γ ∈ I−1 we have (γ̄ ⊗ γ)�−1 = {1} hence R̃w =
∑

γ∈I−1
dim(γ)2 =

#Σ−1 and similarly L̃w = #Σ1, where we denote #Σ = dim(c(Σ)). As a result the
modular function ∇ of the Hecke pair (�,�0) is non trivial as soon as Σ1, Σ−1 have different
dimensions/cardinals. If one of Σ±1 is non classical (e.g. the dual of a non abelian finite
group), the HNN extension � is neither classical, nor co-classical (but it is unimodular).

An element α = (αk)k∈Z∗ of I(�0) is in Dom θnε, n ∈ N∗, iff we have αε = · · · = αnε = 1.
Hence

⋂
k∈Z Dom θk = {1} and the action of � on �/�0 is faithful. Observe also that � is

finitely generated although �0 is not: indeed, denoting Σ(k) the copy of Σsgn(k) in �0 we

have θ−ε(Σ(nε)) = Σ((n+1)ε), so that � is generated by Σ(1), Σ(−1) and w.

Example 3.48. One can also construct quantum examples by taking for �0 the dual of a
compact group G, and using quantum subgroups �ε associated with quotients Hε = G/Kε.
The index of �ε in � is finite iff Kε is finite. If G is connected, the subgroups Kε must then
be central, and we have #I(�0)/�ε = #Kε.

Assume that G is a connected compact Lie group. Then the fundamental group of
Hε remembers the cardinality of the kernel Kε, and since we assume H1 and H−1 to be
isomorphic we will always have L(JwK) = #K1 = #K−1 = R(JwK) in this case. Similarly,
subobjects of γ̄ ⊗ γ factor through the center Z(G) for any γ ∈ I(�0) ⊂ Rep(G), hence
always belong to I(�ε) so that we have dimq(γ̄ ⊗ γ)�ε = dimq(γ̄ ⊗ γ) and L̃w = R̃w =
(#K1)pw. Moreover, in most simple Lie groups the center is cyclic so that #Kε determines
Kε and �1 ' �−1 implies in fact �1 = �−1. This does not mean that the Hecke algebra will
be completely trivial. One can also take for θ a non-inner automorphism of H to make
the construction more interesting, so that the resulting � looks like a variant of the partial
crossed-product construction.

A typical case is given by G = SU(n) � H1 = H−1 = PSU(n), to be compared with
the “classical case” of the Baumslag-Solitar group BS(n, n) = HNN(Z, id : nZ → nZ).
On the other hand Z(Spin(4k)) = (Z/2Z)2, so that the dual of SO(4k) can be realized in
two different ways as a subgroup of the dual of Spin(4k). Of course one can also look at
SO(3) × SU(2) which is a quotient of SU(2) × SU(2) in two different ways. In all these
cases we have ∇ = 1 because L̃w = R̃w.
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Note that since Kε is contained in any maximal torus of G, the above construction is
compatible with q-deformations – Kε remains a quantum subgroup of the compact quantum
group Gq corresponding to G. However, we still get ∇ = 1, by essentially the same
reasoning since the fusion ring of Gq is the same as the one of G.

4. Compact open quantum Hecke pairs

In this section we introduce Hecke algebras in the setting of locally compact (algebraic)
quantum groups with compact open quantum subgroups. We then describe a generalized
Schlichting completion, which allows us to subsume the Hecke algebras from section 3 in
this setting, and deduce some analytic consequences. Finally, we describe how to pass
from arbitrary Hecke pairs to their reduced versions, and exhibit some new examples of
algebraic quantum groups.

4.1. Compact open Hecke algebras. Let us fix an algebraic quantum group G together
with an algebraic quantum subgroup H ⊂ G. Recall that this is determined by a non-zero
central projection pH ∈ Oc(G) such that ∆(pH)(1⊗pH) = pH⊗pH. Throughout this section
we normalize the Haar functionals of Oc(G) in such a way that ϕ(pH) = ψ(pH) = 1.

The definition of compactly supported functions on the quantum homogeneous space
G/H is easier than in the discrete case, since the relevant invariant functions on G are
also compactly supported. Namely, we define cc(G/H) = Oc(G)H = {f ∈ Oc(G) |
∆(f)(1⊗ pH) = f ⊗ pH}. It is shown in [LVD] that this algebra is a direct sum of ma-
trix algebras, i.e. it corresponds to a “discrete” quantum space. We denote by c0(G/H)
the closure of cc(G/H) in C0(G) and `2(G/H) its closure in L2(G). It can be shown that
c0(G/H) is a quantum homogeneous space in the sense of [Vae05], cf [KKS16, Proposition
6.2, Theorem 6.4]. One can define cc(H\G), cc(H\G/H) exactly in the same way, as well
as the corresponding c0 and `2 spaces.

To define the Hecke algebraH(G,H) it suffices to restrict the natural convolution product
of Oc(G) to the space of H-biinvariant functions. This product is transported from the dual
multiplier Hopf algebra D(G) via the Fourier transform F : Oc(G) → D(G) determined
by (F(f), h) = ϕ(hf). Explicitly we have, for f , g ∈ Oc(G):

f ∗ g = (fϕ⊗ id)(S−1 ⊗ id)∆(g) = (id⊗ ϕS−1(g))∆(f).

Together with the ∗-structure f ] := F−1(F(f)∗), not to be confused with the given ∗-
structure on Oc(G), this turns Oc(G) into a ∗-algebra. Explicitly we have f ] = S(f)∗δ,
where δ ∈M(Oc(G)) is the modular element of G.

The left regular representation of the dual algebra λ : D(G) → B(L2(G)) is then given
by λ(F(f))(Λ(g)) = Λ(f ∗ g), see [VY20, Section 4.2.2]. We also have the right regular

representation ρ : D(G) → B(L2(G)) given by ρ(F(f)) = Ĵλ(F(f))∗Ĵ . Here Ĵ is the
modular conjugation operator for ϕ̂, the dual left Haar weight also given by the formula
ϕ̂(F(f)) = ε(f).

Explicitly we have ρ(F(f))(Λ(g)) = Λ(g ∗ σ̂−i/2(f)) for all f, g ∈ Oc(G). Here, by
slight abuse of notation, we write σ̂−i/2(f) instead of F−1(σ̂−i/2(F(f)), where (σ̂t)t∈R is
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the modular group of ϕ̂. Note that the map f 7→ σ̂−i/2(f) is an algebra isomorphism from
(Oc(G), ∗) to D(G). We have δpH = pH because H is compact and σ̂t(pH) = pH for all

t ∈ R because the restriction of ϕ̂ : D(G)→ C to D(H) is the left Haar weight of Ĥ.

Lemma 4.1. We have cc(H\G/H) = pH ∗ Oc(G) ∗ pH. In particular cc(H\G/H) is closed
under the convolution product ∗ and the involution ].

Proof. Let f ∈ Oc(G). Using the definition of the convolution product we calculate pH∗f =
(pHϕ ⊗ id)(S−1 ⊗ id)∆(f) = (h ⊗ id)(πHS

−1 ⊗ id)∆(f) = (hπH ⊗ id)∆(f), where h is the
Haar functional of O(H) and πH : Oc(G) → O(H) the restriction map. It follows that
pH ∗ f = f iff f ∈ cc(H\G). Similarly one checks f ∈ cc(G/H) iff f ∗ pH = f . Since pH is a
projection in the convolution algebra this yields the claim. �

This allows us to give the following definition.

Definition 4.2. The Hecke algebra of (G,H) is the ∗-algebra H(G,H) = cc(H\G/H) with
the convolution product and ∗-structure ] as above.

We obtain a nondegenerate ∗-representation of H(G,H) on `2(G/H) by considering the
restriction of the right regular representation. Here we use that for f ∈ cc(H\G/H) and
g ∈ cc(G/H) the element g ∗ f is again contained in cc(G/H), so that ρ(F(f)) indeed
maps `2(G/H) to itself. We also observe that ρ ◦ F : H(G,H) → B(`2(G/H)) is anti-
multiplicative for the convolution product, that is, ρ(F(f ∗ g)) = ρ(F(g))ρ(F(f)) for all
f, g ∈ H(G,H).

In the same way as in the discrete case we view cc(G/H) as a D(G)-module, see the
discussion before Proposition 3.27, and obtain the space EndG(cc(G/H)) of D(G)-module
maps.

Proposition 4.3. We have (mutually inverse) anti-multiplicative algebra isomorphisms

T : H(G,H)→ EndG(cc(G/H)), T (f)(h) = h ∗ f and

T−1 : EndG(cc(G/H))→ H(G,H) ∼= cc(G/H)H, T−1(F ) = F (pH).

Proof. Since T (f) for f ∈ H(G,H) commutes with the left convolution action of D(G)
it is clear that T is well-defined, and it is obvious from the definition that T is anti-
multiplicative.

Let us verify that T is an isomorphism by verifying that the above formula for T−1 yields
indeed its inverse. Well-definedness is again easy to check, and using left H-invariance of
f ∈ H(G,H) = cc(H\G/H) we get

(T−1T )(f) = T (f)(pH) = pH ∗ f = f.

Conversely, given F ∈ HomG(cc(G/H), cc(G/H)) we compute

(TT−1)(F )(h) = (TT−1)(F )(h ∗ pH) = h ∗ (TT−1)(F )(pH)

= h ∗ pH ∗ T−1(F ) = h ∗ F (pH) = F (h ∗ pH) = F (h)

for all h ∈ cc(G/H), using that cc(G/H) ⊂ Oc(G) because H ⊂ G is compact open. �
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4.2. Example: quantum doubles. Let us consider the situation where H is a compact
quantum group and G = H ./ Ĥ the quantum double of H. Recall that G is the locally
compact quantum group given by the von Neumann algebra L∞(G) = L∞(H)⊗̄L(H),
equipped with the coproduct

∆G = (id⊗ σ ⊗ id)(id⊗ ad(W )⊗ id)(∆⊗ ∆̂),

where ad(W ) is conjugation with the multiplicative unitary W ∈ L∞(H)⊗̄L(H). This is a
special case of the generalized quantum doubles studied in [BV05].

In fact, the quantum double of a compact quantum group is naturally an algebraic
quantum group in the sense of Van Daele, which allows us to give algebraic descriptions
of almost all the data involved [DVD04], [VY20]. More precisely, if we write O(H) for
the polynomial function algebra of H as before and D(H) for the algebraic convolution
algebra, then W ∈ M(O(H) � D(H)), and Oc(G) = O(H) � D(H), equipped with the
comultiplication given by the formula above, defines an algebraic quantum group. It con-
tains H naturally as an algebraic compact open quantum subgroup, and the corresponding
group-like projection is pH = 1⊗ p0, where p0 ∈ D(H) is the central support of the counit.
One checks that

cc(H\G) = 1⊗D(H) cc(G/H) = W ∗(1⊗D(H))W

inside Oc(G), and the space of H-biinvariant functions on G is

cc(H\G/H) ∼= {x ∈ D(H) | W ∗(1⊗ x)W = 1⊗ x} = Z(D(H)),

i.e. cc(H\G/H) identifies with the center of the algebraic convolution algebra of H with
respect to its ordinary product.

By definition, the Hecke algebra H(G,H) is cc(H\G/H) equipped with the restriction
of the convolution product on Oc(G). In the present situation, it is more convenient
to describe the ∗-subalgebra F(cc(H\G/H)) ⊂ D(G) obtained via the Fourier transform
F : Oc(G)→ D(G),F(f)(h) = ϕ(hf). As discussed in [VY20, Chapter 4], we can identify
D(G) = D(H) ./ O(H), which is the algebraic tensor product D(H)⊗O(H) equipped with
the twisted multiplication

(x ./ f)(y ./ g) := xy(2)(y(1), f(1)) ./ (Ŝ(y(3)), f(3))f(2)g,

for x, y ∈ D(H), f, g ∈ O(H). The ∗-structure on D(G) is defined in such a way that both
D(H) ./ 1 and 1 ./ O(H) are ∗-subalgebras of M(D(G)), and the natural skew-pairing
between D(G) and Oc(G) is

(y ./ g, f ⊗ x) = (y, f)(g, x), x, y ∈ D(H), f, g ∈ O(H),

again following the conventions in [VY20]. The left and right invariant Haar functional

on Oc(G) is given by ϕ = ĥ ⊗ hR, where ĥ is the Haar state of O(H) and hR the right
Haar functional on D(H), compare [VY20, Proposition 4.19]. As is well-known, using
the Fourier transform F we can identify Z(D(H)) ⊂ (Oc(G), ∗) with the ∗-subalgebra
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(p0 ./ 1)(1 ./ O(H)) (p0 ./ 1) = p0 ./ O(H)ad ⊂ D(G), where

O(H)ad = {f ∈ O(H) | f(2) ⊗ ĥ(f(1)S
−1(f(3))) = f ⊗ 1}

= {f ∈ O(H) | ∆cop(f) = ∆(f)},
with the product and ∗-structure induced from O(H). This is precisely the algebra of
characters inside O(H).

We note that, with suitable adjustments, similar computations go through for generalized
quantum doubles built out of compact and discrete quantum groups.

4.3. The Schlichting completion. Let � be a discrete quantum group and � ⊂ � be
a quantum subgroup. If � ⊂ � is almost normal (see Definition 3.3) we shall construct
a pair (G,H) consisting of an algebraic quantum group G and a compact open quantum
subgroup H ⊂ G, playing the role of the Schlichting completion of the Hecke pair (�,�)
[Sch80].

More precisely, our strategy is as follows. We first define the algebra Oc(G) as a sub-
algebra of `∞(�) using the “discrete” Hecke convolution product, see Definition 4.5. The
key point of the construction consists then in proving that this algebra is a multiplier Hopf
∗-algebra, and more specifically, that the coproduct takes its values in the appropriate
subspace of M(Oc(G)�Oc(G)), see Proposition 4.6.

It is then easy to see that the projection p� corresponds to a CQG algebra Oc(H) ⊂
Oc(G), and that cc(G/H) = cc(�/�) as subspaces of `∞(�), see Propositions 4.10 and 4.11.
Using the Haar functional of Oc(H) and the �-invariant functional µ on cc(�/�) one can
then construct the integrals of Oc(G), so that G is in fact a locally compact quantum group
by [KVD97]. We end the section by making the connection between the “discrete” and
“compact open” Hecke algebras H(�,�) and H(G,H).

Lemma 4.4. We say that γ ∈ I(�) is in the support of x ∈ `∞(�) if pγx 6= 0. Then given
γ ∈ I(�), a ∈ cc(�/�) and b ∈ cc(�\�) such that γ ∈ Supp(a ∗ b), there exist α ∈ Supp(a),
β ∈ Supp(b) and λ ∈ I(�) such that γ ⊂ α⊗ λ⊗ β.

Proof. If γ ∈ Supp a ∗ b, at least one term of the sum (3.6) has γ in its support. Hence
there exist α ∈ Supp(a), β ∈ Supp(b) such the corepresentation ᾱ ⊗ γ ⊗ β̄ contains an
element λ ∈ I(�). By Frobenius reciprocity a non-zero morphism λ → ᾱ ⊗ γ ⊗ β̄ induces
a non-zero morphism α⊗ λ⊗ β → γ and we are done. �

Similarly one can define the support Supp(ϕ) of a linear functional ϕ ∈ cc(�)∗ as the set
of elements γ ∈ I(�) such that pγϕ 6= 0. If ϕ has finite support, it extends uniquely to a
normal functional ϕ ∈ `∞(�)∗.

Definition 4.5. Given a Hecke pair (�,�) we denote by Oc(G) (resp. C0(G)) the subalge-
bra (resp. the C∗-subalgebra) of `∞(�) generated by the elements a ∗ b with a ∈ cc(�/�),
b ∈ cc(�\�).

In the following lemmas we will always assume that Oc(G) and C0(G) arise in the above
way from a Hecke pair. Note that by definition of the convolution product, e.g. (3.5), a ∗ b
is a finite sum of elements of `∞(�) so that it is indeed in `∞(�). It is easy to check, using
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both expressions in (3.5), that a∗ ∗ b∗ = (a ∗ b)∗, so that Oc(G) is in fact a ∗-subalgebra of
`∞(�) and C0(G) is its norm closure.

In view of the definition of a ∗ b one can also say that the algebra Oc(G) is generated by
elements of the form (id⊗ϕ)∆(a) where a ∈ c(�/�), ϕ ∈ cc(�/�)∗ have both finite support
over I(�)/�, i.e. pτa = 0, pτϕ = 0 for all but a finite number of right classes τ . We denote
cc(�/�)∨ the space of these finitely supported functionals. It follows from this description
that the weak closure of Oc(G) in `∞(�) is the so-called cokernel of the �-action on �/�,
which is known to be a Baaj-Vaes subalgebra [KKSV, Definition 2.8, Proposition 2.9].
Below we prove a more precise, C∗-algebraic version of this property, specific to the case
of Hecke pairs.

For x ∈ C0(G) we can consider ∆(x) which is a priori an element of `∞(�)⊗̄`∞(�).

Proposition 4.6. We have ∆(Oc(G))(1⊗Oc(G)), ∆(Oc(G))(Oc(G)⊗1) ⊂ Oc(G)�Oc(G)
and ∆(C0(G))(1⊗ C0(G)), ∆(C0(G))(C0(G)⊗ 1) ⊂ C0(G)⊗ C0(G).

Proof. The assertions about C0(G) follow by density from the ones for Oc(G), since ∆ is
continuous. Let us prove that ∆(Oc(G))(Oc(G)⊗1) ⊂ Oc(G)�Oc(G). By multiplicativity
it suffices to consider elements of the form ∆(x)(y⊗1) with x = a∗b, y = c∗d, a, c ∈ cc(�/�),
b, d ∈ cc(�\�), and by linearity we can assume a = p[α]a, b = p[β]b, c = p[γ]c, d = p[δ]d using
left or right classes as appropriate.

As a first step, consider a linear functional ϕ ∈ cc(�)∗ with finite support and compute,
using (3.5) and coassociativity:

(id⊗ ϕ)∆(x) = κ−1
α (hRS(aα)⊗ id⊗ ϕ)∆2(b) = a ∗ ((id⊗ ϕ)∆(b)).

Since ∆(`∞(�\�)) ⊂ `∞(�\�)⊗̄`∞(�) we have (id ⊗ ϕ)∆(b) ⊂ `∞(�\�). Take moreover
τ ∈ �\I(�) such that (pτ ⊗ϕ)∆(b) 6= 0. Then there exist ν ∈ τ , µ ∈ Supp(ϕ) and λ ∈ I(�)
such that λ⊗ β and ν⊗µ have a common irreducible subobject. By Frobenius reciprocity
this implies ν ⊂ λ ⊗ β ⊗ µ̄. Since Supp(ϕ) is finite, this shows that τ belongs to a finite
subset of �\I(�) (depending on Supp(ϕ) and β). Hence we have (id ⊗ ϕ)∆(b) ∈ cc(�\�)
and (id⊗ ϕ)∆(x) ∈ Oc(G).

Second step. Observe that we have by (3.7) and coassociativity:

∆(a ∗ b)(y ⊗ 1) = κ−1
β̄

(id⊗ id⊗ hLS−1(bβ))(id⊗∆)[∆(a)(y ⊗ 1)].

Recall that we have ∆(a) ∈ `∞(�)⊗̄`∞(�/�). Moreover, take τ ∈ I(�)/� such that
∆(a)(y ⊗ pτ ) 6= 0. Then there exist µ ∈ Supp(y), ν ∈ τ , λ ∈ I(�) such that α ⊗ λ
and µ ⊗ ν have a common irreducible subobject. By Frobenius reciprocity this implies
ν ⊂ µ̄⊗ α ⊗ λ. According to Lemma 4.4 there exists λ′ ∈ I(�) such that µ ⊂ γ ⊗ λ′ ⊗ δ.
Since double classes in �\I(�)/� are finite unions of right classes it follows that τ belongs
to a finite subset P ⊂ I(�)/�.

Note that `∞(P) :=
∑

τ∈P pτ`
∞(�/�) is a finite dimensional subspace of cc(�/�). It

follows that there is a finite family of vectors ti ∈ `∞(P) and elements si ∈ `∞(�), such that
∆(a)(y⊗1) =

∑
si⊗ ti. We have then, according to the above equation: ∆(a∗ b)(y⊗1) =∑

si ⊗ (ti ∗ b) ∈ `∞(�)� (`∞(P) ∗ b).
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Choose now a finite, linearly independent family of vectors xk = ak ∗ b in the finite
dimensional subspace `∞(P)∗b ⊂ Oc(G), and elements zk ∈ `∞(�) such that ∆(x)(y⊗1) =∑
zk ⊗ xk. Choose a corresponding family of linear forms with finite support ϕk ∈ cc(�)∗

such that ϕl(xk) = δk,l for all k, l; we have then zk = ((id⊗ ϕk)∆(x))y. Applying the first
step to ϕk we get (id⊗ ϕk)∆(x) ∈ Oc(G), hence zk ∈ Oc(G). �

Recall that the antipode of � is well-defined as a map S : c(�)→ c(�) or cc(�)→ cc(�),
but not in general from `∞(�) to itself. It exchanges the subspaces cc(�/�) and cc(�\�) of
c(�), which are also subspaces of `∞(�).

Proposition 4.7. We have S(Oc(G)) ⊂ Oc(G). Equipped with the restriction of ∆, Oc(G)
(resp. C0(G)) is a multiplier Hopf-∗-algebra (resp. a bicancellative Hopf-C∗-algebra).

Proof. For any a ∈ cc(�)/�, b ∈ cc(�\�) we have S(b∗) ∗ S(a∗) = S((a ∗ b)∗) = S(a∗ ∗ b∗),
see the last part of the proof of Proposition 3.23 where bi-invariance of a, b is not used.
Replacing a, b by their adjoints and using the fact that S exchanges cc(�/�) and cc(�\�)
we see that S stabilizes the canonical generating subspace of the algebra Oc(G). Since S
is antimultiplicative, it stabilizes Oc(G).

We also obtain a character ε : Oc(G)→ C by restricting the counit of `∞(�). From the
fact that � is a discrete quantum group we know that (ε ⊗ id)∆ = id = (id ⊗ ε)∆ on the
level of `∞(�), which implies that ε is a counit for Oc(G). Using that S is an algebra anti-
automorphism of Oc(G) one then checks easily that Oc(G) is a multiplier Hopf ∗-algebra.
Upon taking completions it follows that C0(G) is a bicancellative Hopf C∗-algebra. �

Note that the central projection p� ∈ `∞(�) belongs to Oc(G) since p� ∗ p� = p�. It
moreover satisfies the property ∆(p�)(1⊗ p�) = p� ⊗ p� = ∆(p�)(p� ⊗ 1), in `∞(�) hence
also in Oc(G).

Definition 4.8. We denote pH = p� ∈ Oc(G) and O(H) = pHOc(G), and let C(H) be the
norm closure of O(H) in `∞(�).

We now describe the connection of the construction developed above to the classical
Schlichting completion, as described for example in [KLQ08].

Proposition 4.9. Let (�,�) = (Γ,Λ) be a classical discrete Hecke pair, with Schlichting
completion (G,H). The canonical map Γ → G with dense image induces an embedding
C0(G) ⊂ `∞(Γ). Under this identification we have C0(G) = C0(G) and Oc(G) = Oc(G),
and similarly C(H) = C(H) and O(H) = O(H).

Proof. Observe that a ∗ b for a ∈ cc(Γ/Λ), b ∈ cc(Λ\Γ) is right invariant under the action
of the intersection of the point stabilizers in Γ of all points in the finite set Supp(b) ⊂ Λ\Γ.
Since this group contains the intersection of finitely many point stabilizers of the action
of Γ on Γ/Λ we see that a ∗ b ∈ Oc(G), compare the description of the latter in [KLQ08].
Hence we get Oc(G) ⊂ Oc(G). Conversely, an element g of O(G) can be written as finite
sum of characteristic functions on Γ/ΓF for finite sets F ⊂ Γ/Λ. Modulo left translation
by Γ we can assume that g is the characteristic function of the point ΓF in Γ/ΓF . We can
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write this as product of all aγ ∗ fγ, where aγ = δγΛ ∈ cc(�/�), fγ = evγΛ ∈ cc(�/�)∗ for
γ ∈ F . This yields the equality Oc(G) = Oc(G).

From the fact that both C0(G) and C0(G) are completions of Oc(G) = Oc(G) inside
B(`2(Γ)) we get C0(G) = C0(G). Finally, the claim about the canonical subgroups follows
from O(H) = pΛOc(G) = pΛOc(G) = O(H). �

We now return to the general setup of quantum Hecke pairs.

Proposition 4.10. Equipped with the restriction ∆H of (pH ⊗ pH)∆, O(H) (resp. C(H))
is a CQG algebra (resp. a Woronowicz C∗-algebra).

Proof. Recall that the comultiplication on Oc(G) is implemented on the Hilbert space
level by conjugation with the multiplicative unitary for �, i.e. for f ∈ `∞(�) we have
∆(f) = W ∗(1 ⊗ f)W in B(`2(�) ⊗ `2(�)). In particular, the comultiplication of O(H)
extends continuously to a unital ∗-homomorphism ∆H : C(H) → C(H) ⊗ C(H). Since
we already know that O(H) is a Hopf ∗-algebra the cancellation conditions for C(H) are
satisfied. Hence C(H) is a Woronowicz C∗-algebra.

This implies that there is a Haar functional on O(H), obtained by restricting from the
Haar state of C(H). We conclude that O(H) is a CQG algebra, compare [KS97]. �

So the corresponding compact quantum group H is an “algebraic” compact open quan-
tum subgroup of G, with restriction map induced by the projection pH = p�. We de-
note by h its Haar functional. We can identify the corresponding homogeneous space
cc(G/H) = {a ∈ Oc(G) | (1⊗ pH)(∆(a)) = a⊗ pH} as follows.

Proposition 4.11. We have cc(G/H) = cc(�/�) as subspaces of `∞(�). The coproduct
restricts to an algebraic action cc(G/H) → M(Oc(G) � cc(G/H)), in particular we have
∆(cc(G/H)) (Oc(G)⊗ 1) ⊂ Oc(G)� cc(G/H).

If µ is a �-invariant functional on cc(�/�), i.e. (id⊗ µ) ((pα ⊗ 1)∆(x)) = µ(x)pα for
all x ∈ cc(�/�) and α ∈ I(�), then µ is at the same time a G-invariant functional on
cc(G/H), i.e. (id⊗ µ)((y ⊗ 1)∆(x)) = µ(x)y for all x ∈ cc(G/H), y ∈ Oc(G).

Proof. Take a ∈ cc(�/�). Then we have a = a ∗ p� hence a ∈ Oc(G). By definition of
c(�/�) we have (1 ⊗ p�)∆(a) = a ⊗ p� hence a ∈ cc(G/H). For the converse inclusion,
take x ∈ cc(G/H). In particular we have (1 ⊗ p�)∆(x) = x ⊗ p� so x ∈ c(�/�). It
remains to prove that x has finite support in this algebra, i.e. pτx = 0 for all but a finite
number of classes τ ∈ I(�)/�. It is clearly sufficient to prove this for x = a ∗ b with
a ∈ cc(�/�), b ∈ cc(�\�), since taking products of such elements reduces the support. But
this results from Lemma 4.4 and the Hecke condition: if γ ∈ Supp(a ∗ b) then γ ⊂ α ⊗ µ
with α ∈ Supp(a) and µ ∈ JβK, β ∈ Supp(b); writing JβK as a finite union of right classes
[γ] and decomposing α⊗ γ into a finite number of irreducibles δ we see that Supp(a ∗ b) in
included in the union of the finite number of right classes [δ].

For x ∈ cc(G/H), y ∈ Oc(G) we have ∆(x)(y⊗ 1) ⊂ Oc(G)�Oc(G) by Proposition 4.6,
since x ∈ Oc(G). It remains to show that z = (yϕ⊗ id)∆(x) ∈ cc(G/H) for any ϕ ∈ cc(�)∗

with finite support. But we can write

(1⊗ p�)∆(z) = (ϕ⊗ id⊗ id)((y ⊗ 1)∆⊗ id)[(1⊗ p�)∆(x)]
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where all terms belong to the corresponding algebraic tensor products, and since (1⊗ p�)
∆(x) = x ⊗ p� we recognize (1 ⊗ p�)∆(z) = z ⊗ p�. The last assertion is trivial because
we can check the equality (id⊗ µ)((y ⊗ 1)∆(x)) = µ(x)y by multiplying by an arbitrary
central projection pα. �

Note that (id⊗hpH)∆(x) is well-defined inOc(G) for any x ∈ Oc(G) since (id⊗pH)∆(x) ∈
Oc(G)� pHOc(G) = Oc(G)�O(H).

Proposition 4.12. For any x ∈ Oc(G) we have (id ⊗ hpH)∆(x) ∈ cc(G/H). If µ is a
G-invariant functional on cc(G/H) then ϕ : x 7→ µ[(id⊗hpH)∆(x)] defines a left invariant
functional on Oc(G).

Proof. Define a map T : Oc(G) → Oc(G) by setting T (x) := (id ⊗ hpH)∆(x), x ∈
Oc(G). Let us check that T (x) ∈ cc(G/H). We have (∆ ⊗ id)∆(x) = (id ⊗ ∆)∆(x)
in `∞(�)⊗̄`∞(�)⊗̄`∞(�). Multiplying on the left by 1⊗ pH⊗ pH we obtain, since (pH ⊗ pH)
∆(1− pH) = 0:

(1⊗ pH ⊗ 1)(∆⊗ id)((1⊗ pH)∆(x)) = (id⊗∆H)((1⊗ pH)∆(x)).

Note that both sides of the identity now lie in Oc(G)�O(H)�O(H). Applying id⊗ id⊗h
we obtain (1⊗ pH)∆(T (x)) = (id⊗ pHh)((1⊗ pH)∆(x)) = T (x)⊗ pH, by invariance of h.

On the other hand, starting again from the coassociativity relation and multiplying by
y ⊗ 1⊗ pH we get the following identity in Oc(G)�Oc(G)�Oc(H):

((y ⊗ 1)∆⊗ id)((1⊗ pH)∆(x)) = (id⊗ (1⊗ pH)∆)((y ⊗ 1)∆(x)).

Applying id⊗ id⊗ h we obtain (y ⊗ 1)∆(T (x)) = (id⊗ T )((y ⊗ 1)∆(x)). In other words,
T : Oc(G)→ cc(G/H) is equivariant with respect to the left G-actions.

So we can indeed define ϕ = µ ◦ T , and it is left invariant if µ is invariant on cc(G/H):

yµT (x) = (id⊗ µ)((y ⊗ 1)∆(T (x))) = (id⊗ µT )((y ⊗ 1)∆(x)),

using the previous equivariance identity for T . �

Theorem 4.13. Suppose that (�,�) is a quantum Hecke pair. Then G introduced in
Definition 4.5 is an algebraic quantum group. We call the pair (G,H) the Schlichting
completion of (�,�).

Proof. We apply Proposition 4.12 to the functional µ on cc(�/�) from Definition 3.13, which
is invariant by Proposition 3.21, and defines at the same time an invariant functional on
cc(G/H) by Proposition 4.11. We have ϕ(pH) = µ(p�) = 1, hence ϕ does not vanish. Finally
it is positive because µ⊗ h is positive; indeed µ and h have both C∗-algebraic realizations
— recall that µ is a sum of positive forms on each matrix factor of cc(G/H) = cc(�/�). �

Now we compare the Hecke algebras of a Hecke pair and of its Schlichting completion.
This will provide an analytic proof that the “discrete” Hecke operators on `2(�/�) are
bounded.
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Proposition 4.14. Let (G,H) be the Schlichting completion of a quantum Hecke pair
(�,�). Then we have canonical identifications

H(G,H) ' EndG(cc(G/H)) = End�(cc(�/�)) ' H(�,�),

compatible with the multiplications. This identification is compatible with the ∗-structures
if we identify a bi-invariant function f ∈ cc(H\G/H), viewed as element of H(G,H), with
σ̂−i/2(f) ∈ cc(�\�/�), viewed as element of H(�,�).

Proof. The first and last identifications are given by Propositions 4.3 and 3.28 respectively.
The identity in the middle is given by Proposition 4.11. �

Proposition 4.15. We have a canonical unitary isomorphism `2(�/�) ' `2(G/H) induced
by the equality cc(�/�) = cc(G/H) in `∞(�). The Hecke algebra H(�,�) acts by bounded
operators on `2(�/�).

Proof. The identification cc(�/�) = cc(G/H) in Proposition 4.11 is isometric since by
construction the restriction of ϕ to cc(G/H) = cc(�/�) coincides with µ. Hence it induces
a unitary isomorphism `2(�/�) ' `2(G/H). Now the action of f ∈ H(�,�) on cc(�/�) =
cc(G/H) agrees with the convolution on the right by σ̂i/2(f) ∈ cc(H\G/H) by Proposition
4.14. Hence it suffices to observe that the latter is obtained by restriction of the right
regular representation of D(G) on L2(G), which acts by bounded operators. �

This, together with the Theorem 3.32, yields an analytical proof of Property (RT) from
Definition 3.30 for Hecke pairs. It should be possible to give a categorical proof as well.

Corollary 4.16. Property (RT) is satisfied by any Hecke pair (�,�).

Finally we record the connection between the modular group of a discrete Hecke pair
(�,�), see Theorem 3.36, and the modular group of its Schlichting completion G.

Proposition 4.17. The modular group of the canonical state ω on H(�,�) agrees with the
restriction of the modular group of ϕ̂ to F(cc(H\G/H)) ⊂ D(G) via the Fourier transform.

Proof. Recall that the element in H(�,�) corresponding to f ∈ H(G,H) is f̃ := σ̂−i/2(f).
We have then

ω(f̃) = (p� | f̃) = (pH | σ̂−i/2(f)) = ϕ(πH(σ̂−i/2(f))

= ε(πH(σ̂−i/2(f)) = ε(σ̂−i/2(f)) = ϕ̂(σ̂−i/2(F(f))) = ϕ̂(F(f)).

Note that we use in the fourth equality the fact that πH(σ̂−i/2(f)) is H-invariant, hence
constant. �

4.4. Reduction procedure. Starting from a discrete Hecke pair (�,�), it can well happen
that the Schlichting completion G is in fact discrete or even trivial. This is connected to
the faithfulness of the action of � on �/� and to the reduction procedure that we describe
now.

Suppose that � is a discrete quantum group with a quantum subgroup � and the corre-
sponding projection p� ∈ `∞(�). By cc(�/�)∨ we denote finitely supported functionals on
�/� as in the previous subsection.
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Recall from [KKSV, Definition 2.8] that the cokernel of an action of a discrete quantum
group � on a C∗-algebra A = C0(X), given by a ∗-homomorphism α : C0(X)→M(c0(�)⊗
C0(X)), is defined as the following weak closure in `∞(�):

(4.1) N(� y X) = {(id⊗ µ)α(a); a ∈ A, µ ∈ A∗}′′.
Here we are concerned with the case C0(X) = c0(�/�), with α being the appropriate
restriction of ∆.

Definition 4.18. We say that the pair (�,�) is reduced if the canonical action of � on
�/� is faithful, i.e. the cokernel N(� y �/�) coincides with `∞(�).

Note that in the definition (4.1) of the cokernel, when X = �/�, we can also work with
a ∈ `∞(�/�) and µ ∈ `∞(�/�)∗, or with a ∈ cc(�/�) and µ ∈ cc(�/�)∨. In particular
we see, following the discussion after Definition 4.5, that a Hecke pair (�,�) is reduced
if and only if � embeds into its Schlichting completion (G,H), i.e. the canonical map
ι : Oc(G)→ `∞(�) has strictly dense image.

It is shown in [KKSV, Proposition 2.9] that the cokernel N(� y �/�) is a Baaj-Vaes
subalgebra of `∞(�), so that there exists a discrete quantum group �̃ such that `∞(�̃) =
N(� y �/�) (with the comultiplication given simply by the restriction). Putting a = p�

and taking for µ the restriction of the counit ε, we see that p� belongs also to N(� y �/�)
and thus defines a quantum subgroup �̃ of �̃ such that `∞(�̃) = p�`

∞(�̃).
When � is normal in �, it follows for example from the proof of [VV03, Theorem 2.11]

(or from results of [KKS16]) that N(� y �/�) = `∞(�/�). In this case it is easy to see
that �̃ = {e}: as `∞(�/�) is the space of left slices of ∆(p�) by [KKS16, Theorem 3.3], we
have that

p�`
∞(�/�) = p�{(ω ⊗ id)∆(p�) | ω ∈ `1(�)}′′

= {(ω ⊗ id)((1⊗ p�)∆(p�)) | ω ∈ `1(�)}′′ = Cp�.

Proposition 4.19. Let (�,�) and (�̃, �̃) be as above. Then (�̃, �̃) (called further the
reduction of (�,�)) is reduced, `∞(�/�) = `∞(�̃/�̃), `∞(�\�) = `∞(�̃\�̃). Moreover if
θ : `∞(�/�)+ → R+ is an nsf weight, then it is �-invariant iff it is �̃-invariant.

Proof. Denote by α̃ the action of �̃ on `∞(�̃/�̃). Note that this is again given by the
(suitable restriction of) the coproduct of `∞(�). Thus to see that (�̃, �̃) is reduced it
suffices to show that N(� y �/�) = N(�̃ y �̃/�̃); this in turn will follow once we
establish the latter part of the proposition.

Note that
`∞(�̃/�̃) = {a ∈ N(� y �/�) | (1⊗ p�)∆(a) = p� ⊗ a}.

Thus it suffices to show that we have `∞(�/�) ⊂ N(� y �/�). That however follows
immediately as we can simply put µ = ε in the definition of N(� y �/�).

The equality of the left coset spaces would follow in a similar manner once we observe
that `∞(�\�) ⊂ N(� y �/�). This is true as N(� y �/�) is R-invariant – and `∞(�\�) =
R
(
`∞(�/�)

)
. The last statement is then obvious (the invariance condition is literally the

same). �
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Note that the inclusion `∞(�/�) ⊂ N(� y �/�) can be informally understood as the
classically obvious fact that the kernel of the action of � on �/� is contained in �.

Proposition 4.20. Let (�,�) be as above and let (�̃, �̃) be its reduction. Then (�,�) satis-
fies the Hecke condition if and only if (�̃, �̃) does, and if this is the case, the corresponding
Hecke algebras are isomorphic.

Proof. The first statement follows from Proposition 3.7, as the proposition above implies
that the actions of � on `∞(�/�) and of �̃ on `∞(�̃/�̃) are given by the same von Neumann
algebraic morphism and the notion of finite orbits does not formally involve any quan-
tum group structure. The second statement follows now from the identification of Hecke
algebras as certain commutants with respect to these actions. �

We can now characterize the Hecke pairs that give rise to non-discrete Schlichting com-
pletions as follows.

Lemma 4.21. Let (�,�) be a Hecke pair, (�̃, �̃) its reduction and (G,H) its Schlichting
completion. Then G is discrete if and only if �̃ is finite.

Proof. Recall that we have by construction the strictly dense (equivalently, so-dense) in-
clusion C0(G) ⊂ `∞(�̃). Multiplying by p� = p�̃ = pH we see that C(H) is strictly dense

(equivalently, so-dense) in `∞(�̃), so that �̃ is finite if and only if H is finite.
Now if H is finite, [KKS16, Proposition 4.5] implies that G is discrete. On the other

hand if G is discrete, H, being an open (hence also closed by [KKS16, Theorem 3.6])
quantum subgroup of G, must be discrete by [DKSS12, Theorem 6.2]. Finally a discrete
and compact quantum group must be finite. �

In particular if (�,�) is a reduced Hecke pair, the associated Schlichting completion is
discrete if and only if � is finite. This shows, with the help of Lemma 3.44, that the
examples of quantum Hecke pairs discussed in the previous section lead to non-discrete
Schlichting completions.

Corollary 4.22. The Schlichting completions associated with the HNN Hecke pairs of
Example 3.47 are non-discrete locally compact quantum groups, with non trivial modular
group as soon as #Σ1 6= #Σ−1.

Note that the scaling constant of these quantum groups equals 1, since they arise from
algebraic quantum groups.

We address now the reduction procedure for compact open Hecke pairs. Suppose that G
is an algebraic quantum group and that H is an algebraic compact open quantum subgroup
of G, given by a projection pH ∈ Oc(G). We shall check that the procedure described above
again yields a reduction of the pair (G,H).

Consider the ∗-algebra generated as follows:

A(G y G/H) := ∗-alg{(id⊗ µ)(∆(a)) | a ∈ cc(G/H), µ ∈ cc(G/H)∨},
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where cc(G/H)∨ denotes the finitely supported functionals on cc(G/H)); note that as each
of these can be written in the form νb with ν ∈ cc(G/H))∨ and b ∈ cc(G/H), the formula
above makes sense. Note also that we can identify cc(G/H))∨ with elements of the form
ψb|cc(G/H) for b ∈ cc(G/H)), where ψ is the right Haar weight of G.

Proposition 4.23. The algebra A(G y G/H) defines an algebraic quantum group (with
the structure inherited from Oc(G)). Moreover pH ∈ A(G y G/H) and cc(G/H) ⊂
A(G y G/H).

Proof. We will use the map T : Oc(G)→ cc(G/H) given by the formula

T (a) = (id⊗ hH)(∆(a)(1⊗ pH)), a ∈ Oc(G).

Note that this map extends to a C∗-algebraic conditional expectation (preserving the right
invariant Haar weight) from C0(G) onto c0(G/H), with the property T (Oc(G)) = cc(G/H).
This, together with [VD98, Remarks, p. 342] shows the following facts:

cc(G/H)∨ = {ω|cc(G/H) | ω ∈ Ôc(G)}, and

cc(G/H)∨ = {bψ|cc(G/H) | b ∈ cc(G/H)} = {bϕ|cc(G/H) | b ∈ cc(G/H)}
= {ϕb|cc(G/H) | b ∈ cc(G/H)},

where ϕ is the left-invariant weight.
Using the properties of T and the fact that Oc(G) is a multiplier Hopf algebra one can

show the following fact: Oc(G) � cc(G/H) = ∆(cc(G/H))(Oc(G) ⊗ 1). This implies (via

the arguments of [VD98, Proposition 4.2]) that convolving a functional ω ∈ Ôc(G) and a
functional µ ∈ cc(G/H)∨ yields ω ? µ ∈ cc(G/H)∨.

We need to show that for every a, b ∈ A(G y G/H) we have (for example) ∆(a)(b⊗1) ∈
A(G y G/H) ⊗ A(G y G/H). To this end it suffices to prove that for all ω ∈ Ôc(G),
a ∈ cc(G/H) and µ ∈ cc(G/H)∨ the elements (ω ⊗ id)

(
∆((id ⊗ µ)(∆(a)))(b ⊗ 1)

)
and

(id⊗ω)
(
∆((id⊗µ)(∆(a))(b⊗1)

)
belong to A(G y G/H) ; and the latter amount to noting

that cc(G/H) is right-invariant (for the first expression) and exploiting the convolution
statement of the previous paragraph (for the second expression).

Furthermore, A(G y G/H) is S-invariant. This is an easy consequence of the strong
invariance of the left Haar weight, which says that for all a, b ∈ Oc(G) we have

S
(
(id⊗ φ)(∆(a∗)(1⊗ b)

)
= (id⊗ φ)((1⊗ a∗)(∆(b)),

combined with the statements in the beginning of the proof. This suffices to complete the
proof that A(G y G/H) is a multiplier Hopf ∗-algebra, and in fact an algebraic quantum
group, as we can just use the invariant weights of Oc(G).

Then it suffices to show that as we have ε(pH) = 1 we also have ε = εpH, so that ε|cc(G/H)

is finitely supported. This implies that cc(G/H) ⊂ A(G y G/H). �

Definition 4.24. Let (G,H) be as above, denote the algebraic quantum group correspond-

ing toA(G y G/H) by G̃, and its compact quantum subgroup given by pH ∈ A(G y G/H)

by H̃. We call the pair (G̃, H̃) the reduction of (G,H) and say that a pair (G,H) as above
is reduced if A(G y G/H) = Oc(G).
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Proposition 4.25. Let (G,H) and (G̃, H̃) be as above. Then (G̃, H̃) is reduced, cc(G/H) =

cc(G̃/H̃) and cc(H\G) = cc(H̃\G̃). Moreover a functional θ : cc(G/H)→ C is G-invariant

iff it is G̃-invariant.

Proof. Follows exactly the same lines as in Proposition 4.19. �

Observe that the Schlichting completion is constructed specifically so that the resulting
pair (G,H) is reduced. Further we will call (G,H) a Schlichting pair whenever G is an
algebraic quantum group, H is an algebraic compact open quantum subgroup of G and the
pair (G,H) is reduced.

Suppose that we have two locally compact quantum groups G1, G2 with respective
open quantum subgroups H1, H2 corresponding to projections P1 ∈ Cb(G1), P2 ∈ Cb(G2).
We say that a morphism from G1 to G2, described via a Hopf-C∗-algebra morphism π :
C0(G2)→ Cb(G1), maps H1 to H2 if π(P2) ≥ P1. One may check, using [KKS16, Corollary
3.8] that indeed one obtains then (by restriction and multiplying by P1) a quantum group
morphism from H1 to H2.

The following abstract characterization of the Schlichting completion for classical groups
appears in [Tza03, Proposition 4.1]. The injectivity of the map ι′ corresponds in the
classical case to the density of the image of Γ in G′, and the identity ι′(pH′) = pΛ, to the
fact that Λ is the preimage of H ′.

Proposition 4.26. Let (�,�) be a Hecke pair and (G,H) its Schlichting completion, with
the canonical embedding ι : Oc(G)→ `∞(�) defining the morphism from � to G. Then for
any other Schlichting pair (G′,H′) and any morphism from � to G′ mapping � to H′ and
given by an injective map ι′ : Oc(G′)→ `∞(�), there exists a unique morphism from G to
G′, described by a map σ : Oc(G′)→ Oc(G), such that ι ◦ σ = ι′. If in addition we assume
that ι′(pH′) = p� then the morphism from G to G′ is an isomorphism.

Proof. A moment of thought shows that it suffices to show that ι′(Oc(G′)) ⊂ ι(Oc(G)).
Ignoring the injective embedding maps, and using the fact that both (G,H) and (G′,H′)
are Schlichting pairs, it suffices to note that cc(G′/H′) ⊂ cc(G/H). But this follows as
we have P ≤ P ′ (again viewing both as projections in `∞(�)). The second part follows
similarly. �
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homogeneous spaces. I. General theory. Theory Appl. Categ., 28:No. 31, 1099–1138, 2013.

[DKSS12] Matthew Daws, Pawe l Kasprzak, Adam Skalski, and Piotr M. So ltan. Closed quantum sub-
groups of locally compact quantum groups. Adv. Math., 231(6):3473–3501, 2012.

[DVD04] Lydia Delvaux and Alfons Van Daele. The Drinfeld double of multiplier Hopf algebras. J.
Algebra, 272(1):273–291, 2004.

[Fim13] Pierre Fima. K-amenability of HNN extensions of amenable discrete quantum groups. J.
Funct. Anal., 265(4):507–519, 2013.

[Izu02] Masaki Izumi. Non-commutative Poisson boundaries and compact quantum group actions.
Adv. Math., 169(1):1–57, 2002.

[KKS16] Mehrdad Kalantar, Pawe l Kasprzak, and Adam Skalski. Open quantum subgroups of locally
compact quantum groups. Adv. Math., 303:322–359, 2016.

[KKSV] Mehrdad Kalantar, Pawe l Kasprzak, Adam Skalski, and Roland Vergnioux. Noncommutative
Furstenberg boundary. Analysis & PDE, to appear, available at arXiv:2002.09657.

[KLQ08] Steven Kaliszewski, Magnus B. Landstad, and John Quigg. Hecke C∗-algebras, Schlichting
completions and Morita equivalence. Proc. Edinb. Math. Soc. (2), 51(3):657–695, 2008.
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