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THE CONNES EMBEDDING PROPERTY

FOR QUANTUM GROUP VON NEUMANN ALGEBRAS

MICHAEL BRANNAN, BENOÎT COLLINS, AND ROLAND VERGNIOUX

Abstract. For a compact quantum group G of Kac type, we study the ex-
istence of a Haar trace-preserving embedding of the von Neumann algebra
L∞(G) into an ultrapower of the hyperfinite II1-factor (the Connes embed-
ding property for L∞(G)). We establish a connection between the Connes
embedding property for L∞(G) and the structure of certain quantum sub-

groups of G and use this to prove that the II1-factors L∞(O+
N ) and L∞(U+

N )
associated to the free orthogonal and free unitary quantum groups have the
Connes embedding property for all N ≥ 4. As an application, we deduce that
the free entropy dimension of the standard generators of L∞(O+

N ) equals 1
for all N ≥ 4. We also mention an application of our work to the problem of
classifying the quantum subgroups of O+

N .

1. Introduction

The Connes embedding problem asks whether any finite von Neumann algebra
with separable predual embeds into an ultrapower of the hyperfinite II1-factor in a
trace-preserving way. This question was raised by Connes in [16]. See [12, 31, 32]
for nice introductions to this topic. This central question in the theory of oper-
ator algebras is still open and has ramifications in many other areas of mathe-
matics, such as e.g. non-commutative probability theory, quantum information,
and non-commutative algebraic geometry. In probabilistic terms, this question
amounts to knowing whether any finite family of elements of a bounded tracial
non-commutative probability space admits an asymptotic matrix model. In the
framework of Voiculescu’s free entropy theory, this amounts to asking about the
existence of matricial microstates; see [38, 39].

The aim of this paper is to provide a new class of examples of Connes embeddable
von Neumann algebras, namely von Neumann algebras arising from non-coamenable
compact quantum groups of Kac type. Within the operator algebraic framework,
arguably the most studied examples of compact quantum groups of Kac type in-
clude the free orthogonal quantum groups O+

N and the free unitary quantum groups

U+
N . Over the last two decades, this class of quantum groups has been extensively

studied, and remarkable connections have emerged between these quantum groups
and free probability theory. These connections occur at the level of quantum sym-
metries and asymptotic freeness results [3, 6, 10, 18, 19] and also at the operator
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algebra level [9, 20, 22–24, 36]. In particular, the von Neumann algebras L∞(O+
N )

and L∞(U+
N ) share many of the same structural properties with the free group fac-

tors: they are full type II1-factors; they are strongly solid, and in particular they
are prime and have no Cartan subalgebra; they have the Haagerup property and
are weakly amenable with Cowling-Haagerup constant 1 (CMAP). But unlike the
case of the free group factors, the II1-factors L∞(O+

N ) and L∞(U+
N ), N ≥ 3, were

not known to be Connes embeddable (i.e., to admit matricial microstates).
Our main result in this paper is that as soon as N ≥ 4, these von Neumann

algebras have the Connes embedding property. This result is presented as a corol-
lary of a more general and new stability result of the Connes embedding property
under certain quantum group theoretical operations. More precisely, we consider
a generalization within the category of compact quantum groups, of the notion
of a compact group being topologically generated by a pair of closed subgroups
(see Definition 4). Using this technology, we show in Theorem 3.6 that if a Kac
type compact quantum group G is topologically generated by a pair of quantum
subgroups G1,G2 which have the additional property that L∞(G1), L

∞(G2) are
Connes embeddable, then L∞(G) is also Connes embeddable. The utility of The-
orem 3.6 lies in the fact that it can be used to reduce the problem of verifying the
Connes embedding property for L∞(G) to the (possibly easier) problem of verify-
ing the same property for the “smaller” algebras L∞(G1), L

∞(G2). When dealing
with the specific examples of L∞(O+

N ) and L∞(U+
N ), this theorem in fact allows us

to establish the Connes embedding property via an induction procedure over the
dimension parameter N . Another interesting feature of the embedding of L∞(G)
into an ultrapower of the hyperfinite II1-factor given by Theorem 3.6 is that it is
obtained somewhat explicitly in terms of the embeddings associated to the given
quantum subgroups G1,G2. See Remark 4 for details. It is our hope that this ob-
servation can lead to a more systematic understanding of how to construct explicit
matricial microstates for certain quantum group von Neumann algebras.

The paper is organized as follows. Section 1 contains preliminaries about com-
pact and free quantum groups. Section 3 recalls facts about the Connes embedding
property and relates this property for quantum group von Neumann algebras to the
structure of quantum subgroups. In Section 4 the Connes embedding property for
L∞(O+

N ) and L∞(U+
N ), N ≥ 4, is derived through the study of specific quantum

subgroups. Finally, in Section 5 we consider some applications of our results to free
entropy dimension and to the problem of classifying the quantum subgroups of O+

N

which contain the classical orthogonal group ON as a quantum subgroup.

2. Preliminaries

2.1. Compact quantum groups. In this section we recall some basic facts on
compact quantum groups. We follow [43] and [29] and refer to these papers for the
facts stated below.

A compact quantum group is a pair G = (A,Δ) where A is a unital C∗-algebra
and Δ : A → A⊗A is a unital ∗-homomorphism satisfying

(ι⊗Δ)Δ = (Δ⊗ ι)Δ (coassociativity),

[Δ(A)(1⊗A)] = [Δ(A)(A⊗ 1)] = A⊗A (non-degeneracy),

where [S] denotes the norm-closed linear span of a subset S ⊂ A ⊗ A. Here and
in the rest of the paper, the symbol ⊗ will denote the minimal tensor product of
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C∗-algebras, ⊗ will denote the spatial tensor product of von Neumann algebras,
and � will denote the algebraic tensor product of complex associative algebras.
The homomorphism Δ is called a coproduct. The C∗-algebra A together with the
coproduct Δ is often called a Woronowicz C∗-algebra.

For any compact quantum group G = (A,Δ), there exists a unique Haar state
h : A → C which satisfies the following left and right invariance property, for all
a ∈ A:

(1) (h⊗ ι)Δ(a) = (ι⊗ h)Δ(a) = h(a)1.

We say that a compact quantum group G is of Kac type if h is a tracial state. Note
that in general h may not be faithful on A. In any case, we can construct a GNS
representation πh : A → B(L2(G)), where L2(G) is the Hilbert space obtained by
separation and completion of A with respect to the sesquilinear form 〈a|b〉 = h(a∗b),
and πh is the natural extension to L2(G) of the left multiplication action of A on
itself. The C∗-algebra

Cr(G) = πh(A) ⊂ B(L2(G))

is called the reduced C∗-algebra of functions on G. Due to the invariance properties
of the Haar state h, the coproduct Δ extends to a unital ∗-homomorphism Δr :
Cr(G) → Cr(G)⊗ Cr(G), making the pair (Cr(G),Δr) a compact quantum group
(with faithful Haar state), called the reduced version of G. The von Neumann
algebra of G is given by

L∞(G) = Cr(G)′′ ⊆ B(L2(G)).

We note that Δr extends to an injective normal ∗-homomorphism Δr : L∞(G) →
L∞(G)⊗L∞(G), and the Haar state on Cr(G) extends to a faithful normal Δr-
invariant state on L∞(G).

Let H be a Hilbert space and u ∈ M(K(H) ⊗ A) be an invertible (unitary)
multiplier. The multiplier u is called a (unitary) representation of G if, following
the leg numbering convention,

(2) (ι⊗Δ)u = u12u13.

If dimH = n < ∞, then (after fixing an orthonormal basis of H) we can identify u
with an invertible matrix u = [uij ] ∈ Mn(A) and (2) means exactly that

Δ(uij) =

n∑
k=1

uik ⊗ ukj (1 ≤ i, j ≤ n).

Of course the unit 1 ∈ A is always a representation of G, called the trivial repre-
sentation.

Let u ∈ M(K(H1)⊗A) and v ∈ M(K(H2)⊗A) be two representations of G. Then
their direct sum is the representation u⊕v ∈ M(K(H1⊕H2)⊗A), and their tensor
product is the representation u⊗v := u13v23 ∈ M(K(H1⊗H2)⊗A). An intertwiner
between u and v is a bounded linear map T : H1 → H2 such that (T⊗ι)u = v(T⊗ι).
The Banach space of all such intertwiners is denoted by HomG(u, v). If there exists
an invertible (unitary) intertwiner between u and v, they are said to be (unitarily)
equivalent. A representation is said to be irreducible if its only self-intertwiners
are the scalar multiples of the identity map. It is known that each irreducible
representation of G is finite dimensional and every finite dimensional representation
is equivalent to a unitary representation. In addition, every unitary representation
is unitarily equivalent to a direct sum of irreducible representations.
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Denote by Irr(G) the collection of equivalence classes of finite dimensional irre-
ducible unitary representations of G. For each α ∈ Irr(G), select a representative
unitary representation uα = [uα

ij ] ∈ Mnα
(A). The linear subspace Pol(G) ⊆ A

spanned by {uα
ij : α ∈ Irr(Ĝ), 1 ≤ i, j ≤ nα} is a dense ∗-subalgebra of A,

called the algebra of polynomial functions on G. Pol(G) is in fact a Hopf ∗-algebra
with coproduct Δ0 : Pol(G) → Pol(G) � Pol(G) given by restriction of the co-
product Δ. The antipode S : Pol(G) → Pol(G)op is the automorphism given by
(ι ⊗ S)(uα) = (uα)∗, and the counit is the ∗-character ε : Pol(G) → C given by
(ι ⊗ ε)(uα) = 1. For any compact quantum group G, the Haar state h is always
faithful on Pol(G). Moreover G is Kac type if and only if S2 = ι.

The universal enveloping C∗-algebra of Pol(G) is denoted by Cu(G). By univer-
sality, the coproduct on Pol(G) extends continuously to a coproduct Δu on Cu(G),
making (Cu(G),Δu) a compact quantum group (the universal version of G). A
compact quantum group G is called coamenable if the Haar state is faithful on
Cu(G). When G is of Kac type, this is equivalent to L∞(G) being an injective
finite von Neumann algebra [35].

Given a pair of compact quantum groups G,H, we call H a quantum subgroup
of G if there exists a surjective ∗-homomorphism π : Cu(G) → Cu(H) intertwining
the respective coproducts: Δu,H ◦π = (π⊗π) ◦Δu,G. Given two compact quantum
groups G1, G2 the dual free product G1 ∗̂G2 of G1 and G2 is given by the reduced
free product algebra A = Cr(G1)∗rCr(G2) with respect to the Haar states, endowed
with the unique coproduct extending the ones of Cr(G1) and Cr(G2).

A compact quantum group G is called a compact matrix quantum group if there
exists a finite dimensional unitary representation u = [uij ] ∈ Mn(A) whose matrix
elements generate A as a C∗-algebra. Such a representation u is called a funda-
mental representation of G. In this case Pol(G) is simply the ∗-algebra generated
by (uij)1≤i,j≤n.

Remark 1. Associated to any compact quantum group G one can construct a unique

dual discrete quantum group Ĝ. See [1,33] for an introduction to the basic theory of
discrete-compact quantum group duality. Although we do not use the technology of
discrete quantum groups here, it is useful to note that through the discrete-compact
quantum group duality, the algebras Pol(G), Cu(G), Cr(G), L∞(G) introduced
before play the role of the familiar algebras C[Γ], C∗(Γ), C∗

r (Γ), L(Γ) = λ(Γ)′′

(respectively) associated to a discrete group Γ. With this terminology, we see
that the discrete quantum group associated with a dual free product G1 ∗̂ G2 can
be interpreted as the free product quantum group Ĝ1 ∗ Ĝ2, and this justifies our
notation.

2.2. Free orthogonal and free unitary quantum groups. We now introduce
the free orthogonal and free unitary quantum groups which form the central objects
of study in this paper. These quantum groups were first introduced in the operator
algebraic framework by Wang [42]. Purely algebraic versions of these objects were
also introduced by Dubois-Violette and Launer in [21].

Let N ≥ 2. The free orthogonal quantum group O+
N is the compact quantum

group given (in universal form) by the pair (Cu(O+
N ),Δu), where

Cu(O+
N ) = C∗((uij)1≤i,j≤N | u = [uij ] is unitary in MN (Cu(O+

N )) & ū = u
)
,

where ū = [u∗
ij ]. The coproduct Δu is defined so that u becomes a unitary repre-

sentation of O+
N . That is, Δu(uij) =

∑N
k=1 uik ⊗ ukj for each 1 ≤ i, j ≤ N . Note
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that the abelianization of Cu(O
+
N ) is naturally isomorphic to the C∗-algebra of con-

tinuous functions on the compact Lie group ON . In particular, ON is a quantum
subgroup of O+

N .

The free unitary quantum group U+
N is defined in the same fashion as O+

N , except

that we no longer assume that the generators of Cu(U+
N ) are self-adjoint. More

precisely, we define

Cu(U+
N ) = C∗((uij)1≤i,j≤N | u = [uij ] & ū are unitary

)
.

Similarly, UN is a quantum subgroup of U+
N .

From the above definitions, it follows that for G = O+
N , U+

N , the antipode S :
Pol(G) → Pol(G), S(uij) = u∗

ji satisfies S2 = ι. In particular, the Haar states hG

are tracial.

2.3. Invariant theory for O+
N . Let N ≥ 2 and u be the fundamental representa-

tion of O+
N acting on the Hilbert space H = CN . In this section we briefly recall

the structure of the intertwiner spaces HomO+
N
(u⊗k, u⊗l), k, l ∈ N0, as described in

[6] (see also [2]). We start with a couple of definitions.

Definition 1. Let k, l ∈ N0 be such that k + l ∈ 2N0. We denote by NC2(k, l)
the set of non-crossing pair partitions of k upper points and l lower points, that is,
partitions that can be represented by diagrams formed by an upper row of k points,
a lower row of l points, and (k + l)/2 non-crossing strings joining pairs of points.
The vector space of (k, l) Temperley-Lieb diagrams is the abstract complex vector
space TL(k, l) freely spanned by NC2(k, l).

Consider now the Hilbert space H = C
N and denote by (ei)

N
i=1 its standard

basis. Each diagram p ∈ NC2(k, l) acts as a linear map Tp : H⊗k → H⊗l given by

Tp(ei1 ⊗ · · · ⊗ eik) =

N∑
j1···jl=1

⎛
⎝i1 · · · ik

p
j1 · · · jl

⎞
⎠ ej1 ⊗ · · · ⊗ ejl ,(3)

where the middle symbol is 1 if all strings of p join pairs of equal indices and is 0 if
not. We denote by TLN (k, l) ⊆ B(H⊗k, H⊗l) the subspace spanned by the maps
Tp, p ∈ NC2(k, l). This subspace is related to O+

N -intertwiners as follows.

Theorem 2.1 ([2, 6]). Let u be the fundamental representation of O+
N . Then for

all N ≥ 2,

HomO+
N
(u⊗k, u⊗l) = TLN (k, l).

Moreover the family of linear maps (Tp)p∈NC2(k,l) is linearly independent as soon
as N ≥ 2.

If the first index is zero we omit it and we denote NC2(k) = NC2(0, k), TL(k) =
TL(0, k). When there is no risk of confusion we will denote by Fixk = Fix(u⊗k) =
HomO+

N
(1, u⊗k) ⊆ H⊗k the subspace of fixed vectors for the representation u⊗k of

O+
N , and according to Theorem 2.1 we have for N ≥ 2:

Fixk = span {Tp | p ∈ NC2(k)} = TLN (k).

We also recall that Theorem 2.1 has a classical counterpart dating back to Brauer
[11]. We denote by P2(k, l) the set of all pair partitions of k upper points and l
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3804 MICHAEL BRANNAN, BENOÎT COLLINS, AND ROLAND VERGNIOUX

lower points, and we observe that Tp can still be defined for any p ∈ P2(k, l). Then
we have

HomON
(v⊗k, v⊗l) = span {Tp | p ∈ P2(k, l)},

where v is the fundamental representation of ON on H = CN . Note however that
the maps Tp, for p ∈ P2(k, l), are not linearly independent for any N as soon as
k + l is big enough.

Remark 2. In what follows, we will not need to discuss the details of the invariant
theory of U+

N , although it was thoroughly described in [3,6]. We will, however, use
the fact that if w = [wij ] and w̄ = [w∗

ij ] denote the fundamental representation of

U+
N and its conjugate, acting on H = CN and H̄ (respectively), then after canoni-

cally identifying H and H̄ in the obvious way, we have the equality of intertwiner
spaces

HomU+
N
(1, (w ⊗ w̄)⊗k) = HomO+

N
(1, u⊗2k) (k ≥ 1).

3. The Connes embedding property

Before specializing to quantum groups, let us first recall a few basic things about
the Connes embedding property in the context of unital ∗-algebras.

3.1. Connes embeddable tracial ∗-algebras. Let A be a unital ∗-algebra and
τ : A → C a (not necessarily faithful) tracial state. A can be endowed with a
sesquilinear form 〈x, y〉 := τ (x∗y). Let Nτ := {x ∈ A : 〈x, x〉 = 0}. By the
Cauchy-Schwarz inequality, Nτ := {x ∈ A : 〈x, y〉 = 0 ∀y ∈ A}, and therefore Nτ

is a linear subspace of A and 〈·, ·〉 can be defined naturally on the quotient space
A/Nτ , where it is a non-degenerate sesquilinear form. The resulting completion
of A/Nτ is denoted by L2(A, τ ). We denote by Λτ : A → A/Nτ ⊂ L2(A, τ )
the quotient map. If A is generated as a ∗-algebra by elements (xi)i∈I such that
τ ((x∗

ixi)
n)1/n is bounded for each i, then there exists a unital ∗-homomorphism

πτ : A → B(L2(A, τ )) satisfying

πτ (x)Λτ (y) = Λτ (xy) (x, y ∈ A).

The representation πτ is usually called the GNS representation of A with respect to
the tracial state τ . Taking double commutants, we obtain from A a von Neumann
algebra πτ (A)′′ ⊆ B(L2(A, τ )), and the original state τ extends by continuity to a
faithful normal tracial state on πτ (A)′′ still denoted by τ . Throughout this paper,
we will always assume that our tracial ∗-algebras (A, τ ) are such that πτ exists and
that the von Neumann algebra πτ (A)′′ has a separable predual.

Let us briefly recall the ultrapower construction for the hyperfinite II1-factor.
Let R denote the hyperfinite II1-factor and τR its unique faithful normal tra-
cial state. Let ω be a free ultrafilter on N and let Iω ⊆ 	∞(N, R) be the ideal
consisting of those sequences (xn)

∞
n=1 such that limn→ω τR((xn)

∗xn) = 0. Then
the ultrapower of the hyperfinite II1-factor (along the ultrafilter ω) is the quotient
Rω := 	∞(N, R)/Iω, which turns out to be a II1-factor with faithful normal tracial
state τRω ((xn)n + Iω) = limn→ω τR(xn). We now come to the fundamental concept
of this paper.
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Definition 2. Let A be a unital ∗-algebra equipped with a tracial state τ . The
state τ is said to have the Connes embedding property if the finite von Neumann
algebra (πτ (A)′′, τ ) can be embedded into an ultrapower Rω of the hyperfinite II1-
factor R in a trace-preserving way. We write CEP(A) for the set of such tracial
states τ : A → C.

Since our point of view and motivation are those of matricial microstates, let us
also recall the following definition.

Definition 3. Let A be a unital ∗-algebra equipped with a faithful tracial state τ .
If X = (x1, . . . , xn) is a finite subset of Asa := {x ∈ A : x∗ = x}, we say that X has
matricial microstates (relative to τ) if for every m ∈ N and every ε > 0, there is a
k ∈ N and self-adjoint matrices a1, . . . , an ∈ Mk(C) such that whenever 1 ≤ p ≤ m
and i1, . . . , ip ∈ {1, . . . , n}, we have

(4) |trk(ai1ai2 · · · aip)− τ (xi1xi2 · · ·xip)| < ε,

where trk is the normalized trace on Mk(C) satisfying trk(1) = 1.

The following von Neumann algebraic result connecting the existence of matricial
microstates to the Connes embedding property is well known; see for example
[14, Prop. 3.3]:

Proposition 3.1. Let M be a von Neumann algebra with separable predual equipped
with a faithful normal tracial state τ . Then the following are equivalent:

(1) τ ∈ CEP(M) (i.e., M has the Connes embedding property).
(2) Every finite subset X ⊂ Msa has matricial microstates relative to τ .
(3) If Y ⊂ Msa is a generating set for M , then every finite subset X ⊂ Y has

matricial microstates.

In particular, if Y ⊂ Msa is a finite generating set of M , then the above conditions
are equivalent to Y having matricial microstates.

The following lemma gives some important stability properties of CEP(A) that
will be essential in the sequel.

Lemma 3.2. Let (A, τ ) and (Ai, τi)i=1,2 be unital ∗-algebras equipped with tracial
states τ and (τi)i=1,2 respectively. The following assertions are true.

(1) If B ⊆ A is a unital ∗-subalgebra and τ ∈ CEP(A), then τ |B ∈ CEP(B).
(2) If π : A1 → A2 is a unital ∗-homomorphism such that τ2 ◦ π = τ1 and

τ1 ∈ CEP(A1), then τ2|π(A1) ∈ CEP(π(A1)).
(3) If τ1 ∈ CEP(A1) and τ2 ∈ CEP(A2), then τ1 ⊗ τ2 ∈ CEP(A1 � A2) and

τ1 ∗ τ2 ∈ CEP(A1 ∗A2), where ∗ denotes the reduced free product of tracial
unital ∗-algebras [30].

(4) If (τn)n∈N ⊂ CEP(A) is a sequence such that the pointwise limit τ :=
limn→∞ τn exists, then τ ∈ CEP(A).

Proof. (1) and (2) follow from the fact that the Connes embedding property is
stable under (trace-preserving) inclusions of von Neumann algebras. (3) follows
from the fact that the Connes embedding property is stable under tensor products
and free products of von Neumann algebras with respect to tracial states [34, 40].
(4) is a direct ultra product construction. Alternately, this readily follows from the
definition of matricial microstates. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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3.2. Hyperlinear discrete quantum groups. Now let G be a compact quantum
group (of Kac type) and consider the unital Hopf ∗-algebra A = Pol(G), with
coproduct Δ (from now on we drop the notation Δ0 and simply write Δ). Given
a tracial state τ : Pol(G) → C, we will write τ ∈ CEP(G) if τ ∈ CEP(Pol(G)).
Our main interest is in determining when the Haar state hG belongs to CEP(G),
i.e., when (L∞(G), hG) is a Connes embeddable von Neumann algebra. In this case
(following the analogies with discrete groups given in Remark 1), we will say that

the dual discrete quantum group Ĝ is hyperlinear.
We start with a crucial but elementary lemma. Given two states τ1, τ2 on Pol(G),

recall that their convolution product

τ1 
 τ2 := (τ1 ⊗ τ2) ◦Δ

is again a state on Pol(G) and τ1 
 τ2 is tracial if both τ1, τ2 are.

Lemma 3.3. If τ1, τ2 ∈ CEP(G), then τ1 
 τ2 ∈ CEP(G).

Proof. Let σ = τ1 ⊗ τ2|Δ(Pol(G)). Then it follows from Lemma 3.2 (1)-(2) that σ ∈
CEP(Δ(Pol(G))). Moreover, since Δ−1 : Δ(Pol(G)) → Pol(G) is a ∗-isomorphism
such that (τ1 
 τ2) ◦Δ−1 = σ, another application of Lemma 3.2 (2) gives τ1 
 τ2 ∈
CEP(G). �

As one might expect, duals of coamenable compact quantum groups of Kac type
are always hyperlinear.

Lemma 3.4. Let G be a coamenable compact quantum group of Kac type. Then
Ĝ is hyperlinear.

Proof. If G is of Kac type and coamenable, it follows from Ruan [35, Proposition
2.3] that (L∞(G), hG) is a hyperfinite tracial von Neumann algebra. In particular,
this implies that there is a Haar state-preserving embedding of L∞(G) into the
hyperfinite II1-factor R. Since R embeds trivially in Rω in a trace-preserving way,
we are done. �

3.3. Quantum subgroups and a stability result for hyperlinearity. In this
section we present a new stability result for hyperlinear discrete quantum groups
(Theorem 3.6). The main conceptual tool here is a quantization of the notion of
a compact group being topologically generated by a pair of closed subgroups. The
results of this section will be applied to specific examples in the next section.

Let G be a compact quantum group and G1 ≤ G a quantum subgroup (given by
a surjective ∗-homomorphism of Woronowicz C∗-algebras π : Cu(G) → Cu(G1)).
Recall that any representation u of G induces a representation uG1 := (ι ⊗ π)u of
the quantum subgroup G1. When considering spaces of intertwiners, note that we
always have the inclusions

HomG(u, v) ⊆ HomG1
(uG1 , vG1)(5)

for any pair of representations u, v of G. If, moreover, we have equality in (5)
for every u, v, then it follows that G and G1 are isomorphic compact quantum
groups. This leads us to the following quantum analogue of a compact group being
topologically generated by a pair of closed subgroups.
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Definition 4. Let G be a compact quantum group and G1,G2 ≤ G a pair of
quantum subgroups. We say that G is topologically generated by G1 and G2 (and
write G = 〈G1,G2〉) if

HomG(u, v) = HomG1
(uG1 , vG1) ∩ HomG2

(uG2 , vG2)

for every pair of finite dimensional unitary representations u, v of G.

The following proposition shows that the condition G = 〈G1,G2〉 can be char-
acterized purely in terms of a relation between the Haar states on G1,G2, and G.
If v is a representation of G we denote by Fix(v) = HomG(1, v) the space of fixed
vectors of v.

Proposition 3.5. Let C be a class of representations of G such that any irreducible
representation of G is equivalent to a subrepresentation of some element of C. Let
G1,G2 ≤ G. Denote by h = hG the Haar state of G and by hi = hGi

◦ πi the
state on Cu(G) induced by the Haar state of Gi. Then the following conditions are
equivalent.

(1) G = 〈G1,G2〉.
(2) Fix(vG1) ∩ Fix(vG2) = Fix(v) for all v ∈ C.
(3) On Pol(G), we have h = limk→∞(h1 
 h2)

�k (pointwise).

Proof. (1) =⇒ (2) is clear.
(2) =⇒ (1). We have Fix(v ⊕ w) = Fix(v)⊕ Fix(w) and, if w is the restriction

of v on a subspace K ⊂ H, Fix(w) = Fix(v) ∩K. Hence the property Fix(vG1) ∩
Fix(vG2) = Fix(v) holds for any finite dimensional subrepresentation of v. (1)
now follows by Frobenius reciprocity (see [43, Proposition 3.4]): we have indeed
HomG(u, v) � Fix(v ⊗ ū) and similarly for the restrictions to G1, G2.

(2) =⇒ (3). Let u ∈ B(H) ⊗ Cu(G) be a finite dimensional unitary repre-
sentation of G and consider the operators P = (ι ⊗ h)(u) and Pi = (ι ⊗ hi)(u)
(i = 1, 2) in B(H). Then P, P1, P2 are orthogonal projections with range equal to
Fixu,Fix uG1 ,FixuG2 , respectively. In particular, limk→∞(P1P2)

k exists in B(H)
and is the orthogonal projection with range equal to Fix(uG1) ∩ Fix(uG2). As a
result P = limk→∞(P1P2)

k. But since

(6) (P1P2)
k = (ι⊗ (h1 
 h2)

�k)(u),

we conclude that h = limk→∞(h1 
 h2)
�k on every matrix element of every finite

dimensional unitary representation of G. This proves the assertion.
(3) =⇒ (2). Similarly, (6) shows that P = limk→∞(P1P2)

k, hence Fix(uG1) ∩
Fix(uG2) = Fix(u). �

Remark 3. At this point it is worthwhile pointing out the connection between our
notion of topological generation by subgroups and the concept of an inner faithful
representation of a Woronowicz C∗-algebra. Let G be a compact quantum group
and B a unital C∗-algebra. Recall that a ∗-homomorphism α : Cu(G) → B is
inner faithful if Kerα does not contain any non-zero Hopf ∗-ideal. Equivalently,
for any factorization α = α̃ ◦ π with π : Cu(G) → Cu(H), a surjective morphism of
Woronowicz C∗-algebras, we have in fact that π is an isomorphism. More generally,
the Hopf image of α is the “biggest” quantum subgroup (H, π) of G such that α
factors through π : Cu(G) → Cu(H) (cf. [4]) and α is inner faithful iff its Hopf
image is (G, ι).
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With this terminology, it follows that G is topologically generated by (H1, π1),
(H2, π2) iff α := (π1⊗π2)◦Δ : Cu(G) → Cu(H1)⊗Cu(H2) is inner faithful. Indeed,
by [4, Theorem 8.6] α is inner faithful iff FixG(v) = Fix(vα) for all representations

v of G, where vα = vH1
12 v

H2
13 . Then we have

ξ ∈ Fix(vα) ⇔ vH1∗
12 (ξ ⊗ 1⊗ 1) = vH2

13 (ξ ⊗ 1⊗ 1)

⇔ vH1(ξ ⊗ 1) = ξ ⊗ 1 = vH2(ξ ⊗ 1)

so that Fix(vα) = Fix(vH1) ∩ Fix(vH2).
More generally, we say that a quantum subgroup (H, π) is topologically generated

by (H1, π1) and (H2, π2) if it is the Hopf image of α = (π1 ⊗ π2) ◦ Δ. If (H, π),
(H1, π1) are two quantum subgroups of G, we say that H contains H1 if π1 factors
through π. From the definitions, we have that if H = (H, π) contains H1 and
H2, then it also contains the subgroup generated by H1 and H2. Indeed, writing
π1 = ρ1 ◦π and π2 = ρ2 ◦π we have α = (ρ1⊗ρ2)◦ (π⊗π)◦ΔG = (ρ1⊗ρ2)◦ΔH ◦π
and π is a morphism of Woronowicz C∗-algebras; hence H contains the Hopf image
of α.

We now turn to an interesting corollary of Proposition 3.5, which shows that it
is possible to deduce the Connes embeddability of L∞(G) from the Connes embed-
dability of the von Neumann algebras associated to its quantum subgroups.

Theorem 3.6. Let G be a compact quantum group of Kac type and assume G =
〈G1,G2〉 for some pair of quantum subgroups G1,G2 ≤ G. If Ĝ1 and Ĝ2 are

hyperlinear, then so is Ĝ.

Proof. Consider the Haar states hG1
and hG2

and the associated states h1, h2 on
Pol(G). Since the GNS construction for hi yields (L∞(Gi), hGi

), which is Connes
embeddable by assumption, we conclude that h1, h2 ∈ CEP(G). By Lemma 3.3
(h1 
 h2)

�k ∈ CEP(G) for all k ∈ N. Since G = 〈G1,G2〉, an application of
Proposition 3.5 and Lemma 3.2(4) shows that hG = limk→∞(h1 
 h2)

�k belongs
to CEP(G). �

Remark 4. An examination of Proposition 3.5, Theorem 3.6 and their proofs shows
that under the above assumptions, one can build matricial microstates for gen-
erators of L∞(G) using matricial microstates for elements of tensor products of
L∞(G1) and L∞(G2) (which, by assumption, are known to exist!). To see this,
note that by a standard ultraproduct argument along the lines of [14, Prop. 3.3],
it suffices to exhibit a Haar-state-preserving embedding of L∞(G) into a tracial
ultraproduct of tensor products of the von Neumann algebras (L∞(G1), hG1

) and
(L∞(G2), hG2

).

To this end, let Mk be the finite von Neumann algebra (L∞(G1)⊗L∞(G2))
⊗k

equipped with the faithful normal trace-state τk := (hG1
⊗ hG2

)⊗k, for each k ∈ N.
Let ω be a fixed free ultrafilter on N and consider the tracial ultraproduct

M =

ω∏
k∈N

(Mk, τk) :=
( �∞∏

k∈N

(Mk, τk)
)
/Iω,

where Iω = {(xk)k∈N ∈
∏�∞

k∈N
(Mk, τk) : limk→ω τk(x

∗
kxk) = 0}. Note thatM is a fi-

nite von Neumann algebra with faithful normal tracial state τω(x) = limk→ω τk(xk),

where x = (xk)
�
k∈N

∈ M denotes the equivalence class of (xk)k∈N ∈
∏�∞

k∈N
(Mk, τk).
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Denote by σk : Pol(G) → Mk the unital ∗-homomorphism

σk(x) =
(
(πhG1

◦ π1)⊗ (πhG2
◦ π2)

)⊗k ◦Δ2k−1(x) (x ∈ Pol(G)),

where Δr := (ι⊗Δ) ◦Δr−1 : Pol(G) → Pol(G)⊗(r+1) is the r-fold iterated coprod-
uct, πi : Pol(G) → Pol(Gi) is the surjective ∗-homomorphism identifying Gi as a
quantum subgroup of G, and πhGi

: Pol(Gi) → L∞(Gi) is the GNS representation

associated to hGi
. Since G = 〈G1,G2〉 by assumption, we have hG = limk→∞ τk◦σk,

and therefore the ∗-homomorphism

σ : (Pol(G), hG) → (M, τω); σ(x) = (σk(x))
�
k∈N (x ∈ Pol(G))

is trace-preserving and extends uniquely to a trace-preserving normal injective ∗-
homomorphism σ : (L∞(G), hG) → (M, τω).

4. The Connes embedding property for L∞(O+
N ) and L∞(U+

N )

In this section we apply the general theory of the previous sections to study
the hyperlinearity of the discrete quantum groups dual to O+

N and U+
N , N ≥ 2.

In particular, we prove that O+
N is topologically generated by certain canonical

pairs of quantum subgroups of lower rank. The results of this section may be
of independent interest, particularly with respect to the problem of classifying all
quantum subgroups ON ≤ G ≤ O+

N (see Section 5 for more on this).

Below we will consider the following list of quantum subgroups of O+
N . Recall

that we denote by u ∈ B(H) ⊗ Cu(O+
N ) the fundamental representation of O+

N ,
with H = CN , and let us also put S1 = {ξ ∈ RN | ‖ξ‖ = 1} ⊂ H.

(1) The classical orthogonal group ON ≤ O+
N , given by the Woronowicz C∗-

morphism πON
: Cu(O+

N ) → C(ON ) whose kernel is generated by commu-
tators.

(2) The classical permutation group SN ≤ O+
N , given by the Woronowicz C∗-

morphism πSN
: Cu(O+

N ) → C(SN ) whose kernel is generated by the
commutators together with the elements (uij − u2

ij)1≤i,j≤N .

(3) The free product quantum subgroups O+
a ∗̂O+

b ≤ O+
N for a+b = N , given by

the Woronowicz C∗-morphism πa,b : C
u(O+

N ) → Cu(O+
a ∗̂O+

b ) which sends
the a × a upper left (resp. b × b lower right) corner of the fundamental
representation of O+

N to the fundamental representation of O+
a (resp. O+

b ),
and all other entries to 0.

(4) The quantum stabilizer subgroups O+,ξ
N−1 ≤ O+

N for ξ ∈ S1, given by the

Woronowicz C∗-morphisms πξ : Cu(O+
N ) → Cu(O+,ξ

N−1) obtained by com-
pleting ξ into an orthonormal basis and sending the corresponding generator

u11 to 1. Note that O+,ξ
N−1 � O+

N−1 for all ξ.

The main theorems of this section are as follows.

Theorem 4.1. Let N ≥ 4. Then the following assertions are true.

(1) O+
N = 〈ON , O+,ξ

N−1〉 for each ξ ∈ S1.

(2) O+
N = 〈O+,ξ1

N−1, O
+,ξ2
N−1〉 for any pair of linearly independent vectors ξ1, ξ2 ∈

S1.

Theorem 4.2. Let n ≥ 2 be a non-negative integer. Then O+
2n = 〈S2n, O

+
n ∗̂O+

n 〉.
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Before proving Theorems 4.1 and 4.2 we state their applications to hyperlinearity.

Corollary 4.3. Let N = 2 or N ≥ 4. Then Ô+
N is hyperlinear.

Proof. The hyperlinearity of Ô+
2 follows from Lemma 3.4. For the case N = 4,

note that O+
4 = 〈S4, O

+
2 ∗̂O+

2 〉 by Theorem 4.2. Since L∞(S4) and L∞(O+
2 ∗̂O+

2 ) =
(L∞(O+

2 ), hO+
2
) ∗ (L∞(O+

2 ), hO+
2
) are both Connes embeddable, we conclude that

Ô+
4 is hyperlinear by Theorem 3.6. Finally, the cases N ≥ 5 follow by induction

using Theorem 4.1 and Theorem 3.6. �

Using a structure result of Banica [3, Théorème 1], we can easily deduce the

hyperlinearity of Û+
N from the corresponding result for Ô+

N .

Theorem 4.4. Let N = 2 or N ≥ 4. Then Û+
N is hyperlinear.

Proof. From [3, Théorème 1], there exists a trace-preserving embedding

(L∞(U+
N ), hU+

N
) ↪→ (L∞(T) ∗ L∞(O+

N ), τ ∗ hO+
N
),

where τ denotes integration with respect to the Haar probability measure on T.
The Connes embeddability of L∞(U+

N ) now follows from the Connes embeddability

of L∞(T), L∞(O+
N ) and Lemma 3.2 (3). �

Remark 5. We expect that Theorem 4.1 holds when N = 3 (and therefore that

Ô+
3 , Û

+
3 are hyperlinear). However, the following proof method seems to break

down in this case. See also Remark 6.

The remainder of this section is devoted to proving the above quantum subgroup
generation results for O+

N .

4.1. Proofs of Theorems 4.1 and 4.2. We begin by developing some tools for
the proof of Theorem 4.1.

Recall that we denote Fixk = HomO+
N
(1, u⊗k) where u is the fundamental rep-

resentation of O+
N , and let us denote similarly

Fixξk = HomO+,ξ
N

(1, u⊗k) = HomO+
N−1

(1, (ι⊗ πξ)(u)
⊗k) ⊆ H⊗k,

FixON

k = HomON
(1, (ι⊗ πON

)(u)⊗k) ⊂ H⊗k.

According to Proposition 3.5, Theorem 4.1 is equivalent to the equalities Fixξk ∩
FixON

k = Fixξ1k ∩Fixξ2k = Fixk for all k. Hence we start by describing the subspaces

Fixξk.
Let NC2,1(k) be the set of non-crossing partitions of {1, . . . , k} consisting of

blocks with cardinality at most 2. In what follows, a block of p ∈ NC2,1(k) with
cardinality equal to 1 will be called a singleton, and a block with cardinality equal
to 2 will be called a pair. We also denote by NCs

2,1(k) ⊂ NC2,1(k) the subset of

non-crossing partitions containing exactly s singletons, so thatNC2(k) = NC0
2,1(k).

For p ∈ NC2,1(k) and i a k-tuple we put δpi = 1 if il = im for all pairs {l,m} ∈ p,
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and δpi = 0 else. Then we associate to p ∈ NCs
2,1(k) a linear map Tp : H⊗s → H⊗k

as follows:

Tp(ξ1 ⊗ · · · ⊗ ξs) =
N∑

ij=1

δpi (ei1 ⊗ · · · ⊗ ξ1 ⊗ · · · ⊗ ξs ⊗ · · · ⊗ eik),

where we put a term ξi at position l if {l} is the ith singleton in p, and a term eil
else. In other words, Tp is the usual map associated to the pair partition (possibly
with crossings) p′ ∈ P2(s, k) obtained from p by attaching a vertical segment to
each singleton. We will also denote Tp = T 1

p and consider the variant T 2
p (resp.

T 3
p ) where the indices ij range from 2 to N (resp. 3 to N). Finally we denote by

S : H⊗l → H⊗l the “symmetrizing” operators

S : ξ1 ⊗ · · · ⊗ ξl �→
∑
σ∈Sl

ξσ(1) ⊗ · · · ⊗ ξσ(l).

Lemma 4.5. Denote by v = (ι ⊗ πON
)(u) the fundamental representation of ON

and fix ξ ∈ S1.

(1) We have, for any N ≥ 2, k ∈ N:

Fixξk = span {Tp(ξ
⊗s) | p ∈ NCs

2,1(k), 0 ≤ s ≤ k}.

(2) The vectors Tp(ξ
⊗s) for p ∈ NC2,1(k) are linearly independent if N ≥ 3.

(3) We have Tp ∈ HomON
(v⊗s, v⊗k) for all p ∈ NCs

2,1(k).

Proof. Consider e1 = ξ as the first vector of an ONB (e1, . . . , en). By definition we
have (ι⊗πξ)(u) = 1⊕w in the decomposition H = Ce1⊕e⊥1 , where w is equivalent

to the fundamental representation of O+
N−1. As a result (ι⊗ πξ)(u)

⊗k decomposes

into pairwise orthogonal subrepresentations equivalent to w⊗k−s, 0 ≤ s ≤ k. We
know that the subspace of fixed vectors of w⊗k−s is spanned by the elements T 2

q (1),

q ∈ NC2(k − s). Now identifying w⊗k−s with a subrepresentation of (ι⊗ πξ)(u)
⊗k

corresponds to inserting vectors ξ at s fixed legs of the tensor product H⊗k, and
this maps T 2

q (1) to T 2
r (ξ

⊗s), where r is obtained from q by inserting s singletons at
fixed places. In this way we obtain all partitions of NCs

2,1(k).

We know by Theorem 2.1 that the vectors T 2
q (1), q ∈ NC2(k − s), are linearly

independent for N−1 ≥ 2. Since we have decomposed (ι⊗πξ)(u)
⊗k into orthogonal

subrepresentations, this implies that the family of vectors T 2
r (ξ

⊗s), r ∈ NC2,1(k),
is linearly independent. Now we observe that the vectors Tp(ξ

⊗s) = T 1
p (ξ

⊗s),

p ∈ NC2,1(k), can be decomposed as linear combinations of the vectors T 2
r (ξ

⊗s) by
writing

N∑
i=1

ei ⊗ ei = ξ ⊗ ξ +

N∑
i=2

ei ⊗ ei

at each pair of legs of H⊗k determined by the pairs in p. Note that the partitions
r �= p used to decompose in this way a vector Tp(ξ

⊗s) have strictly more singletons
than p, so that the decomposition matrix is block triangular (with respect to the
value of s) with identity blocks on the diagonal. This implies that the family
Tp(ξ

⊗s), p ∈ NC2,1(k), is linearly independent and spans the same subspace as the
vectors T 2

r (ξ
⊗s). This proves the first two assertions.
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Finally, for any p ∈ NCs
2,1(k) we know that Tp = Tp′ for a suitable partition

p′ ∈ P2(s, k) (see above) and that the maps Tp′ are ON -intertwiners (see the end
of Section 2.3). �

We now reduce Theorem 4.1 to a linear independence problem:

Proposition 4.6. For N ≥ 3 and k ∈ N, the following are equivalent:

(1) We have Fixξ1k ∩Fixξ2k = Fixk for some (or any) pair of linearly independent
vectors ξ1, ξ2 ∈ S1.

(2) We have Fixξk ∩FixON

k = Fixk for some (or any) ξ ∈ S1.
(3) The vectors Tp(S(e1 ⊗ · · · ⊗ e1 ⊗ e2)), p ∈ NC2,1(k) \NC2(k), are linearly

independent.

Proof. We first recall that two different stabilizer subgroups ON−1 < ON generate
ON . Indeed, for 1 ≤ i < j ≤ N , calling Ri,j,θ the rotation of angle θ, between the
canonical basis vectors ei and ej it is known that Ri,j,θ generates SON if one takes
all 1 ≤ i < j ≤ N, θ ∈ [0, 2π).

Without loss of generality – at the possible cost of involving conjugation by
rotations – we can assume that the first copy of ON−1 fixes eN and the second copy
fixes e1. One can check that R1,N,θ can be obtained as a conjugation of R1,N−1,θ

by RN−1,N,π . This implies that any two copies of SON−1 < SON generate SON .
The fact that two different copies of ON−1 < ON generate ON follows from the fact
that we can find in ON−1 an isometry that takes SON−1 to ON−1\SON−1 by left
multiplication.

Now let x ∈ Fixξ1k ∩Fixξ2k be given. Then x is fixed by the two copies of ON−1

inside the quantum subgroups O+,ξ1
N−1 and O+,ξ2

N−1; hence it is fixed by ON by the

previous paragraph. On the other hand, for g ∈ ON we have Fixgξk = g · Fixξk :=

v(g)⊗k Fixξk, where v = uON is the fundamental representation of ON . As a result, if

x ∈ FixON

k ∩Fixξk, then x lies in Fixζk for any ζ ∈ S1. This shows that Fix
ξ1
k ∩Fixξ2k

and FixON

k ∩Fixξk are equal and independent of the choice of ξ and the linearly
independent pair ξ1, ξ2 in S1.

According to the previous lemma, any x ∈ Fixξk can be written x =
∑

λpTp(ξ
⊗s)

in a unique way, and since Fixk is spanned by the vectors Tp(1), p ∈ NC2(k), we
have x ∈ Fixk iff λp = 0 for all p ∈ NCs

2,1(k), s > 0. Besides, if x is ON -invariant we

have x = g·x =
∑

λpTp((gξ)
⊗s) for all g ∈ ON , so that the map Tλ : RN → (RN )⊗k,

ξ �→
∑

λpTp(ξ
⊗s) is constant on S1. Hence the second assertion in the statement

is equivalent to the implication (I) “Tλ constant on S1 ⇒ λp = 0 for p ∈ NCs
2,1(k),

s > 0” for all λ : NC2,1(k) → C.
Now we differentiate: Tλ is constant on S1 iff dξTλ(η) = 0 for all ξ ∈ S1, η⊥ξ.

Moreover by ON -covariance of Tλ we have g · dξTλ(η) = dgξTλ(gη), and since ON

acts transitively on pairs of normed orthogonal vectors, Tλ is constant on S1 iff
de1Tλ(e2) = 0. Then we compute dξ(ξ

⊗s)(η) = S(ξ ⊗ · · · ⊗ ξ ⊗ η)/(s− 1)!, hence

dξTλ(η) =
∑

s>0, p∈NCs
2,1(k)

λp

(s− 1)!
Tp(S(ξ

⊗s−1 ⊗ η)).

This shows the equivalence of the last assertion in the statement with the condition
(I) above. �
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Proof of Theorem 4.1. We will verify the linear independence condition given in
part (3) of Proposition 4.6. Consider the vectors yp,i = T 3

p (ei1 ⊗ · · · ⊗ eis) ∈ H⊗k

with il = 1, 2 and p ∈ NC2,1(k). They form a linearly independent family, which we
shall denote by C. Indeed if 〈yp,i|yq,j〉 �= 0, then p, q must have the same singletons
and i = j. Moreover when this is the case, then 〈yp,i|yq,j〉 coincides with the scalar
product 〈T ′

p′(1)|T ′
q′(1)〉 associated with the partitions p′, q′ ∈ NC2(k− s) obtained

from p and q by removing singletons, where T ′
p′ is the map analogous to Tp′ , but

in dimension N − 2. Since N − 2 ≥ 2, the vectors T ′
p′(1) are linearly independent,

and we can deduce that the Gram matrix of the family C is invertible (cf. Theorem
2.1).

Now consider the vectors xp = Tp(S(e1 ⊗ · · · ⊗ e1 ⊗ e2))/(s − 1)! from Propo-
sition 4.6. Note that each xp can be written as a (unique) linear combination of

elements in C. This follows from the definition of S and by writing
∑N

i=1 ei ⊗ ei =

e1 ⊗ e1 + e2 ⊗ e2 +
∑N

i=3 ei ⊗ ei as in the proof of Lemma 4.5. More precisely, if
p ∈ NCs

1,2(k), then xp decomposes into the sum of the s vectors yp,i with i taking
the value 2 only once, and a linear combination of vectors yq,j with q having strictly
more singletons that p. As a result, if we partially order the families B = (xp) and
C = (yp,i) according to the number of singletons s in p, the corresponding decom-
position matrix for B in terms of the basis C will be block lower-triangular (with
rectangular blocks), and each diagonal sub-block (one for each integer s) is itself
block diagonal, with diagonal blocks which are non-zero columns (one for each par-
tition p ∈ NCs

2,1(k)). In particular, this decomposition matrix has maximal rank,
and therefore B is linearly independent. �

Remark 6. Although the proof above only applies for N ≥ 4, it seems very likely
that the linear independence condition introduced in Proposition 4.6, and hence
Theorem 4.1, also holds at N = 3. This would imply the hyperlinearity of Ô+

N

and Û+
N for all N ≥ 2, without relying on Theorem 4.2. In fact, we have strong

numerical evidence that the family of vectors Tp(e1) associated to “one singleton”
partitions p ∈ NC1

2,1(k) is linearly independent for all N ≥ 2, and using similar
techniques as above this would imply Theorem 4.1 for all N ≥ 3.

We now provide a proof of Theorem 4.2.

Proof of Theorem 4.2. Let u ∈ B(C2n) ⊗ Cu(O+
2n) be the fundamental represen-

tation of O+
2n, let l ∈ N, and put ul = u⊗l. Similarly, let w be the fundamental

representation of U+
2n and put wl = w ⊗ w̄ ⊗ w ⊗ · · · (l-terms). In what follows,

we will regard wl and ul as both acting on the same Hilbert space (cf. Remark
2). In particular, when l is even, we have Fix(ul) = Fix(wl) under this identifica-
tion. Moreover, from the description of the spaces of intertwiners for free products
of compact quantum groups given in [27, Proposition 2.15], it also follows that

Fix(u
O+

n ∗̂O+
n

l ) = Fix(w
U+

n ∗̂U+
n

l ) when l is even.

Now choose x ∈ Fix(uS2n

l ) ∩ Fix(u
O+

n ∗̂O+
n

l ) ⊂ (C2n)⊗l. Our goal, according to

Proposition 3.5 (2), is to show that x ∈ Fix(ul). Since Fix(u
O+

n ∗̂O+
n

l ) = Fix(ul) =
{0} when l is odd, we will assume l = 2k (k ∈ N) for the remainder of the proof.

According to the discussion in the previous paragraph, we have x ∈ Fix(w
U+

n ∗̂U+
n

2k ) ⊂
Fix(wUn×Un

2k ), where the classical group Un×Un ≤ U+
n ∗̂U+

n acts block-diagonally on
C2n with respect to a fixed orthonormal basis (ei)

2n
i=1. Now we recall the following



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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elementary group theoretic fact:

U2n is generated by the subgroups S2n and Un × Un.(7)

One can actually even show more, namely that for any d ≥ 2, Ud is (algebraically)
generated by the subgroups Sd and U2, where U2 is viewed as sitting on the upper
left corner of d × d matrices. This is trivial for d = 2. For general d, we proceed
by induction over d: given an element of Ud, it is possible to multiply it on the
left by d − 1 elements of type σUσ−1 where σ ∈ Sd and U ∈ U2 and ensure that
the bottom element of the last column of the new element of Ud is 1. Indeed, the
action by left multiplication leaves the columns invariant, and successive operations
of the groups U2, (13)U2(13), . . . , (1d)U2(1d) can be performed to ensure that the
element of respective indices (1, d), (2, d), . . . , (d− 1, d) is sent to zero and, in turn,
that the entry of index (d, d) is sent to 1. By orthogonality relations, the new
matrix obtained also has zeros on all entries of the last row apart from the last one;
therefore it sits in Ud−1 viewed as the upper left corner of Ud. The general result
follows by induction.

Applying fact (7), we finally conclude that x ∈ Fix(w
U+

n ∗̂U+
n

2k ) ∩ Fix(wU2n

2k ). To
finish the proof, we appeal to the following lemma, which is a special case of a very
recent result of Chirvasitu [13]. We include a detailed proof for the convenience of
the reader. �

Lemma 4.7 ([13], Lemma 3.11). With the notation and conventions as above, we
have the equalities

Fix(w
U+

n ∗̂U+
n

2k ) ∩ Fix(wU2n

2k ) = Fix(w2k) = Fix(u2k) (k ∈ N).

Proof. LetH = C
2n, fix an orthonormal basis (ei)

2n
i=1 forH and writeH = H1⊕H2,

where H1 = span(e1, . . . , en) and H2 = span(en+1, . . . , e2n). Denote by Pi ∈ B(H)
the orthogonal projection whose range is Hi. In the following, we will fix once and
for all the linear isomorphism

(8) Φ : (H ⊗ H̄)⊗k → B(H⊗k)

given by identifying an elementary tensor ei1 ⊗ei2 ⊗· · ·⊗ei2k−1
⊗ei2k ∈ (H⊗ H̄)⊗k

with the rank-one operator

H⊗k � ξ �→
( k⊗
r=1

ei2r−1

)
〈

k⊗
r=1

ei2r | ξ〉 ∈ H⊗k.

Recall that Fix(wU2n

2k ) is spanned by the vectors

Tp =
∑
i

δpi (ei1 ⊗ ei2 ⊗ · · · ⊗ ei2k−1
⊗ ei2k),

where p ∈ P2(2k) is a pair partition respecting the additional requirement that
even points are connected to odd points.

When Φ is restricted to the subspace Fix(wU2n

2k ), we obtain an isomorphism

(9) Fix(wU2n

2k ) ∼=Φ Hom((wU2n)⊗k, (wU2n)⊗k),

which maps the vector Tp to a map Tq, where q ∈ P2(k, k) is obtained by con-
necting the even (respectively, odd) points of p to the input (respectively, output)
points of q. We denote by q ∈ S(k, k) the pair partitions obtained in this way:
these are exactly the ones where input points are connected to output points via
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the permutation specified by q. Note that one recovers the Schur-Weyl duality
for unitary groups describing Hom((wU2n)⊗k, (wU2n)⊗k) as the linear span of the
operators (Tq)q∈S(k,k) which permute the tensor factors of H⊗k.

On the other hand, the image by Φ of the subspace Fix(w2k) is spanned by the
maps Tq where q belongs to a subset S′(k, k) ⊂ S(k, k) ⊂ P2(k, k): namely the one
corresponding to p ∈ NC2(2k) ⊂ P2(2k). The only thing we will need to know
about S′(k, k) is that the family Tq, q ∈ S′(k, k), is linearly independent as soon as
n ≥ 2. This is indeed the case since (Tp)p∈NC2(2k) is linearly independent and Φ is
an isomorphism.

Finally, for each q ∈ S′(k, k) and each k-tuple i = (i1, . . . , ik) ∈ {1, 2}k, we define
a linear map Tq,i := TqPi, where Pi :=

⊗k
r=1 Pir is the orthogonal projection whose

range is Hi :=
⊗k

r=1 Hir . From the description of the intertwiner spaces of U+
N

(N ≥ 2) and their free products given in [6, Section 9] and [27, Proposition 2.15],
respectively, it follows that the family Tq,i, q ∈ S′(k, k), i ∈ {1, 2}k, forms a basis
of the intertwiner space

Hom((wU+
n ∗̂U+

n )⊗k, (wU+
n ∗̂U+

n )⊗k) ∼=Φ Fix(w
U+

n ∗̂U+
n

2k ).

In view of the above isomorphisms, it remains to demonstrate that any linear

map T ∈ Hom ((wU+
n ∗̂U+

n )⊗k, (wU+
n ∗̂U+

n )⊗k)∩Hom((wU2n)⊗k, (wU2n)⊗k) lies in fact
in Hom(w⊗k, w⊗k). By linear independence, T can be uniquely expressed as the
sum

T =
∑

i∈{1,2}k

∑
q∈S′(k,k)

λq,iTq,i (λq,i ∈ C).

Denote by 1k = (1, 1, . . . , 1) the constant k-tuple. Since we can decompose each Tq

as Tq =
∑

i∈{1,2}k Tq,i, we may subtract T1 :=
∑

q∈S′(k,k) λq,1kTq ∈ Hom(w⊗k, w⊗k)

from T and consequently assume for the remainder that TP1k = 0.
Now consider an arbitrary k-tuple i. We claim that T |Hi

= 0. To see this,
consider the linear map g : H → H1, er �→ er, er+n �→ er for all r = 1, . . . , n.
Observe that the restriction g⊗k : Hi → H1k is an isomorphism and that g⊗kTq,i =
Tq,1kg

⊗kPi. Moreover, since T is a U2n-intertwiner it is a linear combination of

maps Tr, r ∈ S(k, k), and each of these maps verifies the relation h⊗kT = Th⊗k

for any h ∈ B(H). We then have

0 = Tg⊗kPi = g⊗kTPi = g⊗k
∑
q

λq,iTq,i =
∑
q

λq,iTq,1kg
⊗kPi.

Since the family Tq,1k , q ∈ S′(k, k), is linearly independent and g⊗kPi : Hi → H1k is

an isomorphism, we conclude that λq,i = 0 for each q. Finally, since H⊗k =
⊕

i Hi

and i was arbitrary, this implies T = 0, i.e., T = T1 ∈ Hom(w⊗k, w⊗k). �

5. Applications

5.1. Free entropy dimension. In this section we present an application of our
hyperlinearity results to the computation of the free entropy dimension of the canon-
ical generators of L∞(O+

N ). We refer the reader to the survey [41] for details on the
various notions of free entropy dimension and related concepts.
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3816 MICHAEL BRANNAN, BENOÎT COLLINS, AND ROLAND VERGNIOUX

Let Γ be a finitely generated discrete group with a finite symmetric system of
generators (gi)

n
i=1, and put xi = �λ(gi), yi = �λ(gi) ∈ L(Γ). In [17, Corollary 4.9],

Connes and Shlyakhtenko showed that the (non-microstates) free entropy dimension
δ∗(xi, yi) verifies the inequality

δ∗(xi, yi) ≤ β
(2)
1 (Γ)− β

(2)
0 (Γ) + 1,(10)

where β
(2)
k (Γ) is the kth 	2-Betti number of Γ. On the other hand, by [8], the

(modified) microstates free entropy dimension is known to satisfy the inequality

δ0(xi, yi) ≤ δ∗(xi, yi).(11)

Finally, if L(Γ) is diffuse and has the Connes embedding property, it was shown in
[25, Corollary 4.7] that

1 ≤ δ0(xi, yi).(12)

All of the above inequalities apply to the case of quantum groups. More precisely,
let G be a compact matrix quantum group of Kac type with diffuse Connes em-
beddable von Neumann algebra L∞(G), let (ui)ni=1 be a self-conjugate family of
inequivalent irreducible unitary representations of G whose matrix elements gener-
ate Pol(G) ⊆ L∞(G), and let (xi

kl), (y
i
kl) ⊂ L∞(G) be the real and imaginary parts

of the matrix elements of these representations (respectively). Then we have the
chain of inequalities

1 ≤ δ0(x
i
kl, y

i
kl) ≤ δ∗(xi

kl, y
i
kl) ≤ β

(2)
1 (G)− β

(2)
0 (G) + 1,(13)

where β
(2)
k (G) is the kth 	2-Betti number of the compact quantum group G in-

troduced by Kyed. See [26] and [28]. Putting all of this together, we obtain the
following result.

Theorem 5.1. The microstates (and non-microstates) free entropy dimension of
L∞(O+

N ) associated to the canonical generators (uij)1≤i,j≤N is 1 for all N ≥ 4.

Proof. It was proved in [15,37] that the right hand side of inequality (13) is exactly
1. Together with the above discussion, the proof is complete. �

5.2. A remark on the classification of intermediate quantum subgroups
between ON and O+

N . Let N ≥ 3 and consider the quantum group O+
N . It

is currently an open problem to determine all intermediate quantum subgroups
ON ≤ G ≤ O+

N . At this time, only one such intermediate quantum subgroup is

known, namely the half-liberated orthogonal quantum group ON ≤ O∗
N ≤ O+

N [7].
Moreover, it is known that the inclusion ON ≤ O∗

N is maximal, meaning that there
is no intermediate quantum group ON ≤ G ≤ O∗

N . See [5] for details. It is also
conjectured in [5] that the inclusion O∗

N ≤ O+
N is maximal. In this short section

we state an easy consequence of Theorem 4.1, which can be regarded as shedding
some light on this conjecture.

Let k ≥ 1 and let E ⊂ CN be a k-dimensional subspace. Generalizing the
case k = N − 1 discussed in Section 4, we can canonically associate to E the
quantum subgroup O+

k,E ≤ O+
N (isomorphic to O+

k acting on E via its fundamental

representation and acting trivially on E⊥), as well as the corresponding subgroups
O∗

k,E, Ok,E.
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Theorem 5.2. If G ≤ O+
N is a quantum subgroup containing O∗

N and O+
3,E , then

G = O+
N .

Proof. From Theorem 4.1 it follows by a simple induction on k = dimE ≥ 3 that
O+

N is generated by ON and any subgroup O+
k,E. In particular it is generated by

O∗
N and O+

3,E . �
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