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Orientation of quantum Cayley trees
and applications

By Roland Vergnioux at Münster

Abstract. We introduce the quantum Cayley graphs associated to quantum discrete
groups and study them in the case of trees. We focus in particular on the notion of quan-
tum ascending orientation and describe the associated space of edges at infinity, which is an
outcome of the non-involutivity of the edge-reversing operator and vanishes in the classical
case. We end with applications to Property AO and K-theory.

0. Introduction

The original motivation of this paper is Cuntz’ result on the K-amenability of free
groups [7], and the geometric proof of this result given by the more general paper of Julg
and Valette [8] on groups acting on trees with amenable stabilizers. Natural quantum ana-
logues of the free groups are the free quantum groups defined by Wang and van Daele [16]
and studied by Banica [5]. Moreover, equivariant KK-theory can be generalized to the case
of coactions of Hopf C �-algebras [2], and the notion of K-amenability carries over to this
quantum framework without di‰culty [17]. It is therefore natural to ask whether free
quantum groups are K-amenable.

To apply the method of Julg and Valette in this framework, one needs a quantum
geometric object to play the role of the tree acted upon by the quantum group under con-
sideration. In the case of amalgamated free products of amenable discrete quantum groups,
the construction of a quantum analogue of the Bass-Serre tree was achieved in [18] and
could be used to prove the K-amenability of these amalgamated free products. In the case
of the free quantum groups, the needed objects should be generalizations of the Cayley
graphs of the free groups. The main goal of this paper is to define a notion of Cayley graph
for discrete quantum groups, and to study its geometric properties in the case of the free
quantum groups.

We will give in the last section applications of this study: a proof of the property of
Akemann and Ostrand and the construction of a KK-theoretic element g for free quantum
groups. To prove that these quantum groups are K-amenable, it remains to prove that
g ¼ 1. We refer the reader to the last section for more historical remarks and references
about Property AO and K-amenability.



The paper is organized as follows:

1. In the first section, we recall some notation and formulae concerning discrete
quantum groups and classical graphs.

2. The second section is a technical one about fusion morphisms of free quantum
groups, and its results are only used in the proofs of Sections 6 and 7. The reader will
probably like to skip over this section at first.

3. In the third section, we give the definition of the Cayley graphs of discrete quan-
tum groups and state some basic results about them.

4. We then restrict ourselves to the case of Cayley trees. We introduce and charac-
terize this notion in the fourth section, where we also study the natural ascending orienta-
tion of such a tree.

5. In the fifth section, we study more precisely the space of geometric edges of a
quantum Cayley tree and we find that the projection of ascending edges onto geometric
ones is not necessarily injective.

6. We show more precisely in the sixth section that the obstruction to this injectivity
is the existence of a natural space of (geometric) edges at infinity, which vanishes in the
classical case.

7. In the seventh section, we equip this space with a natural representation of the free
quantum group under consideration, thus turning it into an interesting geometric object on
its own.

8. Finally the last section deals with applications, as explained above.
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1. Notation

The general framework of this paper will be the theory of compact quantum groups
due to Woronowicz [22]. In fact we will use it, from the dual point of view, as a theory of
discrete quantum groups. Let us fix the notation for the rest of the paper. The starting ob-
ject is a unital Hopf C �-algebra ðS; dÞ such that dðSÞð1nSÞ and dðSÞðS n 1Þ are dense in
S nS. Such a Hopf C �-algebra will be called a Woronowicz C �-algebra. One of the key
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results of the theory is the existence of a unique Haar state h on ðS; dÞ [20]. We will put
d2 ¼ ðidn dÞd ¼ ðdn idÞd and similarly d3 ¼ ðidn idn dÞd2.

We denote by C the category of corepresentations of ðS; dÞ on finite-dimensional
Hilbert spaces, by IrrC a set of representatives of irreducible corepresentations modulo
equivalence, and by 1C ¼ idCn 1S the trivial corepresentation. We will denote by Ha and
va A BðHaÞnS the Hilbert space and the corepresentation associated to an object a A C.
The category C is equipped with direct sum, tensor product and conjugation operations: for
the first and the second ones we refer to [20], and we give now some precisions about the
third one which is slightly more involved.

Let ðeiÞ be an orthonormal basis of Ha. The conjugate object a of a A C is charac-
terized, up to isomorphism, by the existence of a conjugation map ja : Ha ! Ha, z 7! z

which is an anti-isomorphism such that ta : 1 7!
P

ei n ei and t 0a : zn x 7! ðzjxÞ are resp.
elements of Morð1; an aÞ and Morðan a; 1Þ. We put Fa ¼ j �a ja and we say that ja is nor-
malized if Tr Fa ¼ Tr F�1

a . This positive number, which is also equal to ktað1Þk2, does not
depend on the normalized map ja. It is called the quantum dimension of a and is denoted
by Ma. When a is in IrrC, we can assume that a is in IrrC, and the possible conjugation
maps ja only di¤er by a scalar. We have then a ¼ a, and if a3 a one can choose nor-
malized conjugation maps ja; ja such that ja ja ¼ 1. If a ¼ a one has j2

a ¼G1 for every
normalized ja.

The coe‰cients of the corepresentations va span a dense subspace SHS which turns
out to be a Hopf *-algebra. We denote by m its multiplication, and by e : S ! C and
k : S ! S its co-unit and its antipode. Notice that k is not involutive in general. In this
regard, an important role is played by a family ð fzÞz AC of multiplicative linear forms on S,
which are also related to the non-triviality of the modular properties of h. We will need in
this paper the following formulae in the Hopf *-algebra S:

Ex A S ðidn eÞ � dðxÞ ¼ ðen idÞ � dðxÞ ¼ x;ð1Þ

Ex A S m � ðidn kÞ � dðxÞ ¼ m � ðkn idÞ � dðxÞ ¼ eðxÞ1:ð2Þ

Let Lh : S ! H be the GNS construction of the Haar state h, denote by
l : S ! BðHÞ the corresponding GNS representation and by Sred its image. The Kac
system of the compact quantum group ðS; dÞ is given by the following formulae, where
f ? x :¼ ðidn f ÞdðxÞ is the convolution product of f A S� and x A S:

V : ðLh nLhÞðxn yÞ 7! ðLh nLhÞ
�
dðxÞ1n y

�
;ð3Þ

U : LhðxÞ 7! Lh

�
f1 ? kðxÞ

�
:ð4Þ

Let us recall the following notation and formulae from the general theory of
multiplicative unitaries [3]. The unitary V A BðH nHÞ is multiplicative, meaning
that V12V13V23 ¼ V23V12, and for any o A BðHÞ� one puts LðoÞ ¼ ðon idÞðVÞ
and rðoÞ ¼ ðidnoÞðVÞ. On the other hand, U is an involutive unitary on H

such that ~VV ¼ Sð1nUÞVð1nUÞS and V̂V ¼ SðU n 1ÞVðU n 1ÞS are again multi-
plicative unitaries. Moreover the irreducibility property holds:

�
Sð1nUÞV

�3 ¼ 1 or,
equivalently, V̂VV ~VV ¼ ðU n 1ÞS. Here S denotes the flip operator, and we use the leg
numbering notation.
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The reduced C �-algebra Sred coincides with the closure of L
�
BðHÞ�

�
in BðHÞ, and we

similarly denote by ŜS the closure of r
�
BðHÞ�

�
. Both can be made Hopf C �-algebras by the

following formulae:

dredðsÞ ¼ Vðsn 1ÞV � ¼ V̂V �ð1n sÞV̂V ;ð5Þ

d̂dðŝsÞ ¼ V �ð1n ŝsÞV ¼ ~VVðŝsn 1Þ ~VV �:ð6Þ

Notice that the reduction homomorphism l : S ! Sred induces then an isomorphism
between the dense Hopf *-algebras of both Woronowicz C �-algebras. Besides, the unitary
V lies in MðŜS nSredÞ and we have the following commutation relations inside BðHÞ:
½Sred;USredU � ¼ ½ŜS;UŜSU � ¼ 0. There is also a full version of S [3] and we will say that S is
a full Woronowicz C �-algebra when it coincides with its full version.

Finally, the structure of the dual C �-algebra ŜS is very easy to describe: it is iso-
morphic to the direct sum over a A IrrC of the matrix C �-algebras BðHaÞ. We will denote
by pa A BðHÞ the corresponding minimal central projections of ŜS, except the one associated
to the trivial corepresentation 1C which will be denoted by p0.

Let us recall some facts about free quantum groups. The definition was given in [19],
[16]: let nf 2 be an integer, and Q an invertible matrix in MnðCÞ, the C �-algebra AuðQÞ is
then the universal unital C �-algebra generated by n2 elements ui; j and the relations that
make U ¼ ðui; jÞ and QUQ�1 ¼ Qðu�

i; jÞQ�1 A Mn

�
AuðQÞ

�
unitary. The C �-algebra AoðQÞ

is defined similarly with the relations making U unitary and QUQ�1 equal to U . We will
write S ¼ AoðQÞ or AuðQÞ when there is no need to distinguish the unitary and orthogonal
versions. It is easy to see that S carries a unique Woronowicz C �-algebra structure ðS; dÞ
for which U is a corepresentation.

The corepresentation theory of AuðQÞ was fully described in [5] in the following way.
The set of representatives IrrC can be identified with the free monoid on two generators
u and u in such a way that the corepresentation associated to u is equivalent to U and the
following recursive rules hold:

aun ua 0 ¼ auua 0 l an a 0; aun ua 0 ¼ auua 0 l an a 0;

aun ua 0 ¼ auua 0; aun ua 0 ¼ auua 0; au ¼ ua; au ¼ ua:

The corepresentation theory of AoðQÞ is even simpler. We assume in this case that QQ is a
scalar matrix, otherwise the fundamental corepresentation U is not irreducible. The set
IrrC can then be identified with N in such a way that the corepresentation associated to a1

is equivalent to U and the fusion and conjugation rules read as in the representation theory
of SUð2Þ:

ak n al ¼ ajk�lj l ajk�ljþ2 l � � �l akþl�2 l akþl ; ak ¼ ak:

Let us finally fix some terminology concerning classical graphs. Following [14], a
graph g will be given by a set of vertices v, a set of edges e, an endpoints map e : e ! v� v
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and a reversing map y : e ! e which should be an involution such that e � y ¼ s � e. In this
paper we denote by s the flip map for spaces and C �-algebras. If e is injective, the graph
g ¼ ðv; e; e; yÞ is isomorphic to the graph

�
v; eðeÞ; ican; s

�
, which we will call the simplicial

realization of g—although it only comes from a simplicial complex when it has no loops,
i.e. when eðeÞ doesn’t meet the diagonal.

The set of geometric, or non-oriented, edges of g is the quotient eg of e by the relation
a@ yðaÞ. An orientation of the graph is a subset eþ H e such that e is the disjoint union of
eþ and yðeþÞ. The quotient map evidently induces a bijection between any orientation and
the set of geometric edges. When g is a tree endowed with an origin a0, we denote by j � j the
distance to a0 and the ascending orientation of g is the set of edges a such that eðaÞ ¼ ða; bÞ
with jbj > jaj.

Let D be a finite subset of a discrete group G such that 1 B D and D�1 ¼ D. The
directional picture of the Cayley graph associated to ðG;DÞ is given by v ¼ G, e ¼ G� D,
eða; gÞ ¼ ða; agÞ and yða; gÞ ¼ ðag; g�1Þ. Its simplicial realization will be called the simplicial
picture of the Cayley graph.

2. Complements on fusion morphisms

In [4], [5] a full description of the involutive semi-ring structure of the core-
presentation theory of AuðQÞ and AoðQÞ was given by means of the fusion and conjuga-
tion rules on the set of irreducible objects up to equivalence. In this section we choose
concrete representatives for the irreducible objects and compute explicitly isometric mor-
phisms realizing the ‘‘basic’’ fusion rules. This section is a technical one and its results are
only used in Sections 6 and 7: we advise the reader interested in quantum Cayley graphs to
skip to the next section.

In the case of AuðQÞ, with Q A GLnðCÞ and nf 2, let us choose g ¼ u or u, and put
g2l ¼ g, g2lþ1 ¼ g. We will mainly be interested in the corepresentations ak ¼ ggg � � � gk (k
terms) and ak;k 0 ¼ g � � � gk n gkþ1 � � � gkþk 0 . As a matter of fact, the fusion rules of AuðQÞ
reduce to the relations akþ1;k 0þ1 ¼ akþk 0þ2 l ak;k 0 and trivial tensor products. In the or-
thogonal case, we will also put gk ¼ g ¼ a1 for every k A N and ak;k 0 ¼ ak n ak 0 , to simplify
the exposition.

Let us now choose concrete corepresentation spaces Hk and Hk for the classes ak; ak.
We first take H0 ¼ C, equipped with the corepresentation 1C n 1S, and Hg ¼ Hg ¼ Cn,
equipped with the corepresentations U or U . For any k A N� we denote by Hnk

g the
tensor product corepresentation HgnHgn � � �nHgk

, and we define Hk to be its unique
sub-corepresentation equivalent to ak. We proceed in the same way inside Hnk

gk
and

Hnk
g nHnk 0

gk
to get corepresentation spaces Hk and Hk;k 0 representing ak and ak;k 0 . We

will denote by tk; tk and td the morphisms associated to normalized conjugation maps of
ak; ak and d A fg; gg respectively—we can and will assume in this section that jg jg ¼G1,
and we denote by H1 the opposite sign. We put mk ¼ Mak

¼ Mak
and we call ðmkÞk the

sequence of quantum dimensions of the quantum group. Let us gather simple facts about
them in the following lemma:
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Lemma 2.1. (1) Denote by Tl : Hnk
g ! Hnkþ2

g the morphism idnl n tglþ1
n idnk�l .

We have then Hkþ2 ¼
Tk
l¼0

Ker T �
l HHnkþ2

g .

(2) We have ðidn t�
d
Þðtd n idÞ ¼GidHd

and t�d td ¼ m1 idC for d A fg; gg.

(3) For any k A N we have mk f dim Hk, with equality i f f Fk is the identity. More-

over the equality m1 ¼ 2 happens only in the three cases

Ao

0 1

�1 0

� �
; Ao

0 1

1 0

� �
and Au

1 0

0 1

� �
;

up to isomorphism.

(4) Put m�1 ¼ 0. The sequence of quantum dimensions satisfies the induction equations

m1mk ¼ mkþ1 þ mk�1 for k A N. Moreover m0 ¼ 1 and m1 is the geometric mean of Tr Q�Q
and TrðQ�QÞ�1.

Proof. The equality of Point (1) is true when k ¼ 2 because HgnHg is the ortho-
gonal direct sum of tgðCÞ and a subspace equivalent to a2, and the general result follows by
induction because Hkþ1 ¼ H1;k XHk;1. The proof of Point (2) is an easy calculation. For
Point (3), denote by a (resp. h) the arithmetic (resp. harmonic) mean of the eigenvalues of
Fk: the normalization condition of jk shows that a ¼ h�1 so that

mk ¼ a dim Hk ¼
ffiffiffiffiffiffiffiffi
a=h

p
dim Hk f dim Hk:

For the equality case m1 ¼ 2, see [5]. The induction equation of Point (4) relies on the fu-
sion rule ak n a1 ¼ ak�1 l akþ1 which implies that Sð jk n j1Þ and jk�1 l jkþ1 are normal-
ized conjugation maps for the same corepresentation [21]. Finally, the formula for m1 holds
because the matrix Q defines in the canonical base of Cn a (non-normalized) conjugation
map for H1, by definition of AuðQÞ [5]. r

We want now to give the explicit expression of an isometric morphism from Hp;p 0 to
Hpþ1;p 0þ1, for any p; p 0 A N. Note that there is an evident morphism T : Hp;p 0 ! Hpþ1;p 0þ1

given by the formula

T ¼ ðppþ1 n pp 0þ1Þ � ðidHp
n tgpþ1

n idH 0
p
Þ;

where pk denotes the orthogonal projection of Hnk
g onto Hk. However T is not isometric,

and its definition does not allow to compute easily the image of a vector x A Hp;p 0 . In
Proposition 2.2 we give an explicit and simple expression of T, which allows us to compute
its polar decomposition in Proposition 2.3. From this we finally deduce Lemmas 2.4 and
2.5 which will be used in the proofs of Lemmas 6.3 and 7.1 respectively.

We use more precisely the following ‘‘basic morphisms’’ from Hnpþp 0

g to Hnpþp 0þ2
g ,

indexed by l A ½½0; p�� and l 0 A ½½0; p 0��:

Tl; l 0 ¼ ðidnpþ1 n t�gpþ2
n idnp 0þ1Þ � ðidnp�l n tgp�lþ1

n idnlþl 0 n tgpþl 0þ1
n idnp 0�l 0 Þ:

If A ¼ ðal; l 0 Þ is a ðp þ 1Þ � ðp 0 þ 1Þ matrix, we will write TA ¼
P

al; l 0Tl; l 0 . Besides, we have
by Lemma 2.1 a simpler expression of Tl; l 0 when l or l 0 equals zero:
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Tl;0 ¼Gðidnp�l n tgp�lþ1
n idnp 0þlÞ;

T0; l 0 ¼Gðidnpþl 0 n tgpþl 0þ1
n idnp 0�l 0 Þ:

Proposition 2.2. (1) There is at most one matrix A, up to a scalar factor, such that TA

restricts to a non-zero morphism from Hp;p 0 to Hpþ1;p 0þ1. If this is the case, one can assume

that a0;0 ¼ 1 and one has then TA ¼ T.

(2) The following matrix A satisfies the conditions of Point (1):

al; l 0 ¼ ðH1Þ lþl 0 mp�lmp 0�l 0

mpmp 0
:

Proof. (1) It is not hard to check that the family ðTl; l 0 Þ is free, even when restricted
to Hp;p 0 . Hence it su‰ces to prove that an admissible TA is necessarily a multiple of T. First
of all, Point (1) of Lemma 2.1 shows that we have

�
y jTl; l 0 ðxÞ

�
¼ 0 for any y A Hpþ1;p 0þ1

and ðl; l 0Þ3 ð0; 0Þ. Hence if TAðxÞ A Hpþ1;p 0þ1 we obtain

kTAðxÞk2 ¼ a0;0

�
TAðxÞ jT0;0ðxÞ

�
¼ a0;0

�
TAðxÞ jTðxÞ

�
:ð7Þ

In particular a0;0 must be non-zero, and therefore we can assume that it equals 1. To con-
clude we observe that the irreducible subspaces of Hp;p 0 (resp. Hpþ1;p 0þ1) are pairwise in-
equivalent, so that the morphisms TA and T must be proportional on each irreducible
subspace of Hp;p 0 , and (7) finally shows that the corresponding proportionality coe‰cients
all equal 1.

(2) We will express the condition that TAðxÞ should be in Hpþ1;p 0þ1 for any x A Hp;p 0

using Point (1) of Lemma 2.1: for any k A ½½1; p�� and k 0 A ½½1; p 0�� we should have
T �

k;0TAðxÞ ¼ T �
0;k 0TAðxÞ ¼ 0. We therefore compute, for l A ½½0; p�� and l 0 A ½½0; p 0��:

GT �
k;0Tl; l 0 ðxÞ ¼ ðidnp�k n t�gp�kþ1

n idnk�1 n t�gp
n idnp 0þ1Þ

� ðidnp�l n tgp�lþ1
n idnlþl 0 n tgpþl 0þ1

n idnp 0�l 0 ÞðxÞ

¼
0 if k e l � 2 or k f l þ 2;

GT �
1;0T0; l 0 ðxÞ if k ¼ l � 1 or l þ 1;

m1T �
1;0T0; l 0 ðxÞ if k ¼ l ðsee Lemma 2:1Þ:

8><
>:

As a result, we get the following su‰cient conditions on A:

Ek A ½½1; p��; l 0 A ½½0; p 0�� m1ak; l 0 G ðak�1; l 0 þ akþ1; l 0 Þ ¼ 0;

if one agrees to put apþ1; l 0 ¼ 0. We recognize the induction equations satisfied by the
sequence ðmp�iÞ0eiepþ1, up to a sign change. Therefore these conditions mean that
the columns of A should be proportional to

�
ðH1Þp

mp; . . . ;Hm1; 1
�
. Symmetrically

the conditions T �
0;k 0TAðxÞ ¼ 0 are equivalent to the lines of A being proportional to�

ðH1Þp 0
mp 0 ; . . . ;Hm1; 1

�
. The matrix of the statement satisfies these conditions, hence the

associated morphism TA maps Hp;p 0 to Hpþ1;p 0þ1. r
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Proposition 2.3. Let q A ½½0;minðp; p 0Þ�� and denote by G HHp;p 0 the subspace equi-

valent to apþp 0�2q. One has then

kTjGk2 ¼ mpþ1mp 0 � mp�qmp 0�q�1

mpmp 0
:

Proof. Let z A G be a unit vector. Because G is irreducible and T is a morphism, it
is enough to compute the number N

q
p;p 0 ¼ kTðzÞk2. Of course we will use the expression

T ¼ TA of Proposition 2.2. We start from the formula (7) and notice that Tl; l 0 ðzÞ is or-
thogonal to T0;0ðzÞ A Hp nHgp

nHgp
nHp 0 whenever l f 1 or l 0f 1. Hence

kTAðzÞk2 ¼
�
TAðzÞ jT0;0ðzÞ

�
¼

P
l; l 0¼0;1

al; l 0
�
Tl; l 0 ðzÞ jT0;0ðzÞ

�
:

When l or l 0 equals zero, we can use the formulae for T �
l; l 0T0;0ðzÞ obtained in the proof

of Proposition 2.2. The term l ¼ l 0 ¼ 1 will be a recursive one. Let us denote by T 0
k;k 0

and T 0 ¼ ðpp n pp 0 Þ � T 0
0;0 the morphisms analogous to Tk;k 0 and T for the inclusion

Hp�1;p 0�1 ! Hp;p 0 . We remark that

T �
0;0T1;1 ¼GT �

0;0ðid
np�1 n tgp

n tgp
n idnp 0�1ÞT 0�

0;0 ¼ T 0
0;0T 0�

0;0;

so that
�
T1;1ðzÞ jT0;0ðzÞ

�
¼ kT 0�

0;0ðzÞk
2 ¼ kT 0�ðzÞk2. Putting all together, we get the

relation

N
q

p;p 0 ¼ m1 �
mp�1

mp

� mp 0�1

mp 0
þ mp�1mp 0�1

mpmp 0
N

q�1
p�1;p 0�1

, mp 0 ðmpN
q

p;p 0 � mpþ1Þ ¼ mp 0�1ðmp�1N
q�1

p�1;p 0�1 � mpÞ:

Hence the left-hand side quantity is invariant under simultaneous shifts of the three indices
p; p 0 and q. Note that the above relation is still valid when q ¼ 0 if one puts N�1

k;k 0 ¼ 0 for
any k and k 0: as a matter of fact, in this case z lies in Hpþp 0 and in particular T 0�ðzÞ ¼ 0.
One can therefore shift q þ 1 times the indices and obtain the desired identity:

mp 0 ðmpN
q

p;p 0 � mpþ1Þ ¼ �mp 0�q�1mp�q: r

Lemma 2.4. Let Hk�1;1;k HHnk�1
g nHgk

nHnk
gk

be the tensor product of the

respective subspaces equivalent to ak�1; gk and ak, with k A N�. Let t A MorðHk�2;Hk�1;1Þ
be an injection and denote by

— G1 the subspace of ðtn idÞðHk�2;kÞHHk�1;1;k equivalent to a2l ,

— G2 the subspace of Hk�1;kþ1 HHk�1;1;k equivalent to a2l .

Then the norm of the orthogonal projection from G1 onto G2 equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mlml�1

mkmk�1

r
.

Proof. Let A ¼ ðal; l 0 Þ and T ¼ TA be the matrix and the morphism of Proposition
2.2 in the case ðp; p 0Þ ¼ ðk � 2; kÞ. We denote by A 0 ¼ ða 0

l; l 0 Þ the matrix given by a 0
l;0 ¼ al;0
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and a 0
l; l 0 ¼ 0 if l 0 f 1, and we remark that we have then TA 0 ¼ ðT 0 n idÞ, where T 0 is the

morphism of Proposition 2.2 for ðp; p 0Þ ¼ ðk � 2; 0Þ. Hence if x A Hn2k�2
g is a vector in the

subspace of Hk�2;k equivalent to a2l , we have TA 0 ðxÞ A G1 and TAðxÞ A G2. The orthogonal
projection of G1 onto G2 being a morphism, it is a multiple of an isometry, so that its norm
equals ���TA 0 ðxÞ jTAðxÞ

���
kTA 0 ðxÞk kTAðxÞk

¼ kTAðxÞk2

kTA 0 ðxÞk kTAðxÞk
¼ kTðxÞk

kðT 0 n idÞðxÞk ;

because the terms Tl; l 0 ðxÞ with l 0 f 1 are orthogonal to TAðxÞ. We finally compute the
value of the last quotient thanks to Proposition 2.3, with ðp; p 0; qÞ ¼ ðk � 2; k; k � 1 � lÞ
and ðp; p 0; qÞ ¼ ðk � 2; 0; 0Þ:

kTðxÞk2

kðT 0 n idÞðxÞk2
¼ mk�1mk � ml�1ml

mk�2mk

mk�2

mk�1
¼ 1 � mlml�1

mkmk�1
: r

Lemma 2.5. Let H1;k;k 0 HHg nHnk
g nHnk 0

gk
be the tensor product of the respective

subspaces equivalent to g; gg � � � gk (k terms) and gkgkþ1 � � � gkþk 0�1 (k 0 terms), with k; k 0 A N�.
Let t A MorðHk�1;H1 nHkÞ be an injection and denote by

— G1 the subspace of ðtn idÞðHk�1;k 0 ÞHH1;k;k 0 equivalent to akþk 0�1,

— G2 the subspace of H1;kþk 0 HH1;k;k 0 equivalent to akþk 0�1.

Then the norm of the orthogonal projection from G1 to G2 equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mk 0�1

mkþk 0�1mk

r
.

Proof. Like in the previous proof we will use the morphisms
T : H0;kþk 0�1 ! H1;kþk 0 and T 0 : H0;k�1 ! H1;k studied in Proposition 2.2. We notice
that G1 (resp. G2) is the image of Hkþk 0�1 by ðT 0 n idÞ (resp. T), so that the norm of the
projection we are interested in is given by���TðxÞ j ðT 0 n idÞðxÞ

���
kTðxÞk kðT 0 n idÞðxÞk ¼ kTðxÞk

kðT 0 n idÞðxÞk ;

for the same reason as above. Proposition 2.3 with ðp; p 0; qÞ ¼ ð0; k þ k 0 � 1; 0Þ and
ð0; k � 1; 0Þ gives then

kTðxÞk2

kðT 0 n idÞðxÞk2
¼ ðm1mkþk 0�1 � mkþk 0�2Þmk�1

mkþk 0�1ðm1mk�1 � mk�2Þ
¼ mkþk 0mk�1

mkþk 0�1mk

:

The result follows then from the identity mkþk 0�1mk ¼ mkþk 0mk�1 þ mk 0�1, which is easy to
prove by induction, or by noticing that the irreducible subobjects of Hkþk 0�1;k are the same
as for Hkþk 0;k�1, up to the one equivalent to Hk 0�1. r

3. Quantum Cayley graphs

In this section we introduce the notion of Cayley graph for discrete quantum groups.
In fact the classical notion can be generalized into two di¤erent directions, coming from the
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two di¤erent pictures introduced in Section 1. The quantum generalization of the simplicial
picture is still a classical graph. On the contrary, the l2-spaces of the directional picture
give rise in the quantum case to a quantum object, in the spirit of non-commutative
geometry.

In the following definition, we use freely the notation of Section 1. In particular, S

and ŜS are the dual Hopf C �-algebras of a compact quantum group—S being unital—, H is
the GNS space of the Haar state of S, pa is the minimal central projection of ŜS corre-
sponding to an irreducible corepresentation a A IrrC and p0 ¼ p1C .

Definition 3.1. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0.

(1) The classical Cayley graph g associated with ðS; p1Þ is given in simplicial form by
v ¼ IrrC and e ¼ fða; a 0Þ A v2 j d̂dðpa 0 Þðpa n p1Þ3 0g.

(2) The hilbertian quantum Cayley graph associated with ðS; p1Þ is the 4-uplet

ðH;K ;E;YÞ where K ¼ H n p1H, E ¼ VjK A BðK ;H nHÞ and Y ¼ ~VVð1nUÞjK A BðKÞ.

Let us introduce some more objects associated with this quantum graph. We denote
by � the linear form on p1H defined by �

�
LhðxÞ

�
¼ Lh

�
eðxÞ

�
.

(3) The source and target operators of the hilbertian quantum Cayley graph are
E1 ¼ ðidn �Þ and E2 ¼ E1 �Y A BðK;HÞ.

(4) The quantum l2-space of geometric edges is Kg ¼ KerðYþ idÞ.

Remarks 3.2. (1) The central projections p1 that match the hypotheses of Definition
3.1 are sums of projections pa over finite subsets DH IrrC such that D ¼ D and 1C B D.
The elements of e are then the ordered pairs of vertices ða; a 0Þ for which there exist g A D
such that a 0 H an g. Note that this set of edges is symmetric, thanks to the equivalence
a 0 H an g , aH a 0 n g (Jacobi duality). In this paper, the classical Cayley graph will
mainly be used as a tool for the study of the quantum one.

(2) The hilbertian quantum Cayley graph will be more useful for our purposes be-
cause he naturally carries representations of the discrete quantum group under consider-
ation: the C �-algebra S acts on H via the GNS representation, and we let it act trivially on
p1H. Moreover the operators Y, E1 and E2 commute to these representations, and in par-
ticular Kg is also endowed with a natural representation of S. The commutation properties
to the action of ŜS will be examined in Proposition 3.7.

(3) The identity V̂VV ~VV ¼ ðU n 1ÞS provides us with another expression for the re-
versing operator: Y ¼ ðSV̂VVÞ�. Moreover the identity ~VV � ¼ ðĴJ n JÞ ~VVðĴJ n JÞ, where J; ĴJ
are the modular conjugations of S and ŜS [10], shows that ðĴJ n ĴJ ÞYðĴJ n ĴJ Þ ¼ Y� ¼ Y�1.
But the main fact about the reversing operator is its non-involutivity in the quantum case,
see Proposition 3.4—in fact in this proposition it is enough to consider the restriction of
~VVð1nUÞ to H n p1H, as soon as D generates C. r

Example 3.3 (classical case). Suppose S ¼ C �ðGÞ for some discrete group G, with
the co-commutative coproduct given by dðgÞ ¼ gn g for all g A GHC �ðGÞ. Then IrrC
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identifies with G in such a way that vgF idCn g for every g A G, and the tensor product
(resp. the conjugation) of corepresentations then coincides with the product (resp. the in-
verse) of G. In particular, the inclusion a 0 H an g reduces in this case to an equality
a 0 ¼ ag, so that the classical graph of Definition 3.1 is nothing but the simplicial picture of
the Cayley graph associated to ðG;DÞ, with D ¼ D.

Besides, one has H ¼ l2ðGÞ, Sred ¼ C �
redðGÞ, ŜS ¼ c0ðGÞ and the projections pa corre-

spond to the characteristic functions 1a A ŜS of the points of G. Moreover one has the fol-
lowing expressions for the Kac system of ðS; dÞ: Vð1a n 1bÞ ¼ 1a n 1ab and Uð1aÞ ¼ 1a�1 .
From this it is easy to see that the hilbertian quantum graph of Definition 3.1 is nothing but
the l2-object associated to the directional picture ðv; e; e; yÞ of the Cayley graph of ðG;DÞ.
The only non-trivial check concerns the reversing operator: according to Proposition 3.4,
one has SV̂VV ¼ V �SV ¼ E �SE so that Y� ¼ Y is the classical reversing operator. r

Proposition 3.4. Let ðH;V ;UÞ be an irreducible Kac system [3]. Then the multi-

plicative unitary V is co-commutative i f f V̂V ¼ SV �S i f f ~VVð1nUÞ is involutive.

Proof. The direct implications are easy to check in the underlying locally compact
groups. Conversely, assume that V̂V ¼ SV �S. Then for any x ¼ ðidnoÞðVÞ A ŜSred, one also
has x ¼ UðidnoÞðV �ÞU A UŜSredU H ŜS 0

red, hence ŜSred is commutative. Replacing V by
~VV one gets the dual version of this result: if ~VV ¼ SV �S, then V is commutative. Now,
~VVð1nUÞ is involutive i f f ~VVð1nUÞ ¼ ð1nUÞ ~VV � i f f Sð1nUÞ ~VVð1nUÞS ¼ S ~VV �S,

which implies by the previous ‘‘dual’’ statement that ~VV is commutative, hence V is co-
commutative. r

Let us give now alternative expressions for the reversing, source and target operators
in terms of the Hopf *-algebra structure of S, and study the intertwining properties of

these operators relatively to the representations of the dual Hopf C �-algebra ŜS.

Lemma 3.5. Let x; y A SHSred, we have

~VVð1nUÞ � ðLh nLhÞðxn yÞ ¼ ðLh nLhÞ � ðidn kÞ
�
ðxn 1ÞdðyÞ

�
:

Proof. In this proof we will write Y in place of ~VVð1nUÞ, although we do not
necessarily restrict ourselves to K . We have

Y � ðLh nLhÞðxn yÞ ¼ ðxn idÞ �Y � ðLh nLhÞð1n yÞ;

so that it su‰ces to consider the case when x ¼ 1. Let us use the expressions (3) and (4) of
U and V :

Y � ðLh nLhÞð1n yÞ ¼ Sð1nUÞVð1nUÞ � ðLh nLhÞ
�

f1 ? kðyÞn 1
�

¼ Sð1nUÞ � ðLh nLhÞ � d
�

f1 ? kðyÞ
�
:

It is easy to check that dð fz ? aÞ ¼
�
idn ð fz?Þ

��
dðaÞ

�
, hence

Y � ðLh nLhÞð1n yÞ ¼ Sð1nUÞ � ðLh nLhÞ
�
idn ð f1?Þ

��
d
�
kðyÞ

��
¼ Sð1nUÞ � ðLh nLhÞ

�
kn ð f1?Þk

�
sdðyÞ:
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One recognizes then ð1nUÞ2 ¼ 1n 1:

Y � ðLh nLhÞðxn yÞ ¼ S � ðLh nLhÞ � ðkn idÞsdðyÞ

¼ ðLh nLhÞ � ðidn kÞdðyÞ: r

Proposition 3.6. Let � be the linear form on LhðSÞ defined by � �Lh ¼ Lh � e. We

have the following identities:

(1) E1 ¼ ðidn �Þ � V and E2 ¼ ð�n idÞ � V on K X ðLh nLhÞðSnSÞ.

(2) E2 � ðLh nLhÞðxn yÞ ¼ LhðxyÞ for xn y A SnS, and E2 �Y ¼ E1.

Proof. The co-unit e being multiplicative, we have for all x and y in S

ðidn eÞ
�
dðxÞð1n yÞ

�
¼ eðyÞðidn eÞdðxÞ ¼ eðyÞx ¼ ðidn eÞðxn yÞ;

hence E1 ¼ ðidn �Þ � V . In the same way one can write, using the identity e � k ¼ e and
Equation (1):

ðidn eÞðidn kÞ
�
ðxn 1ÞdðyÞ

�
¼ ðidn eÞ

�
ðxn 1ÞdðyÞ

�
¼ xy ¼ ðen idÞ

�
dðxÞð1n yÞ

�
;

which yields E2 � ðLh nLhÞðxn yÞ ¼ LhðxyÞ and E2 ¼ ð�n idÞ � V , thanks to the defini-
tion of E2 and the expression of Y given by Lemma 3.5. Now, using these results and
Equation (2), we can proceed to the last computation, where m : SnS ! S denotes the
multiplication of S:

E2 �Y � ðLh nLhÞðxn yÞ ¼ Lh

�
x
�
mðidn kÞdðyÞ

��
¼ eðyÞLhðxÞ ¼ E1 � ðLh nLhÞðxn yÞ: r

Proposition 3.7. Let us define p̂p2 : ŜSn2 ! LðHÞ by the formula

p̂p2ðxn x 0Þ ¼ xðUx 0UÞ. Similarly, let us denote by p̂p4 : ŜSn4 ! LðKÞ the homomorphism such

that p̂p4ðxn yn y 0 n x 0Þ ¼ ðxn yÞðUx 0U nUy 0UÞ, and let us put d̂d 0 ¼ p̂p4 � ð1n 1n d̂dÞ,
so that d̂d 0ðxÞ ¼ ðU nUÞS d̂dðxÞSðU nUÞ. One has then, for any x A ŜS:

(1) Y � ðxn 1Þ ¼ d̂dðxÞ �Y,

(2) Y � ð1n xÞ ¼ ð1nUxUÞ �Y,

(3) Y � d̂d 0ðxÞ ¼ ðUxU n 1Þ �Y,

(4) E2 � d̂dðxÞ ¼ x � E2 and E2 � d̂d 0ðxÞ ¼ UxU � E2.

Hence Y intertwines the representations p̂p4 � ðidn idn d̂dÞ and p̂p4 � ðd̂dn idn idÞ of

ŜS n ŜS n ŜS on K. In particular Y commutes to p̂p4 � d̂d3. Similarly, E2 intertwines the repre-

sentations p̂p2 and p̂p4 � ðd̂dn d̂dÞ of ŜS n ŜS.
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Proof. Point (1) results from the identity d̂dðxÞ ¼ ~VVðxn 1Þ ~VV �. Writing
E2 ¼ ðidn �Þ �Y�1, it implies the first relation of Point (4). For Point (3), one uses the

formula Y ¼ ðSV̂VVÞ� and the fact that V commutes to UŜSU n 1:

ðUxU n 1ÞY ¼ ðUxU n 1ÞV �V̂V �S ¼ V �ðUxU n 1ÞV̂V �S

¼ V �V̂V �ðU nUÞ ~VVðxn 1Þ ~VV �ðU nUÞS

¼ V �V̂V �ðU nUÞd̂dðxÞðU nUÞS ¼ V �V̂V �S d̂d 0ðxÞ ¼ Yd̂d 0ðxÞ:

Composing on the left by ðidn �Þ, one obtains the second relation of Point (4). For Point

(2), simply notice that ~VV is in MðUSU n ŜSÞ, and hence commutes to 1nUŜSU . r

4. Ascending orientation

In the case of a classical tree, the ascending orientation associated to a chosen origin
defines a subspace Kþ of the l2-space of edges K. The aim of this section is to introduce
and study such a subspace in the case of quantum Cayley graphs. The next definition relies
on the links between the quantum and classical Cayley graphs, the latter one being en-
dowed with the origin 1C.

Definition 4.1. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph associated with
ðS; p1Þ is a tree, and denote by j � j the distance to the origin 1C in this tree.

(1) For any n A Nnf0; 1g we put pn ¼
P�

pa
�� jaj ¼ n

�
A ZðŜSÞ.

(2) We call p?þ ¼
P

ðpn n p1Þd̂dðpnþ1Þ and pþ? ¼
P

ðpn n p1Þd̂d 0ðpnþ1Þ the left and
right ascending projections. Put p?� ¼ 1 � p?þ, p�? ¼ 1 � pþ?.

(3) We call pþþ ¼ pþ?p?þ the ascending projection of the quantum Cayley tree, and
we denote by Kþþ its image. We define similarly

pþ� ¼ pþ?p?�; p�þ ¼ p�?p?þ and p�� ¼ p�?p?�;

Kþ� ¼ pþ�K ; K�þ ¼ p�þK and K�� ¼ p��K :

Remarks 4.2. (1) We have jaj ¼ 1 , a A D and jaj ¼ 0 , a ¼ 1C. In particular the
first point of Definition 4.1 is consistent with the notation p0 and p1 used in Definition 3.1.

(2) Take a A IrrC with jaj ¼ n þ 1. We have d̂dðpaÞ ¼
P

d̂dðpaÞðpb n pb 0 Þ, where the
sum goes over the ordered pairs ðb; b 0Þ such that aH bn b 0. Hence

d̂dðpaÞðpn n p1Þ ¼ d̂dðpaÞðpa 0 n p1Þ;

where a 0 is the vertex preceding a in the classical Cayley graph g. Hence we get the fol-
lowing expression of p?þ, in terms of the classical ascending orientation eþ of g:

p?þ ¼
P

ða 0;aÞ A eþ
V �ðpa 0 n paÞVðidn p1Þ:
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Recall that V plays the role of the endpoints operator, which implements in the co-
commutative case the equivalence between the simplicial and directional pictures of the
Cayley graph.

(3) Let J (resp. ĴJ ) be the modular conjugation on H induced by the involution of S

(resp. ŜS ). We know from [10] that U ¼ ĴJJ, ½J; pn� ¼ 0 and ðJ n JÞd̂dðpnÞðJ n JÞ ¼ S d̂dðpnÞS.
From this we can deduce the following relation between pþ? and p?þ:

pþ? ¼ ðĴJ n ĴJ Þp?þðĴJ n ĴJ Þ:

Hence pþ? and p?þ come from the same projection of MðŜS n ŜSÞ acting respectively on the
left and on the right of K. In particular they commute and are equal in the co-commutative
case. r

In the next proposition we examine the links between the ascending projections and
the reversing and target operators. The first point of the proposition shows that the re-
versing operator switches the left and right versions of the quantum ascending projections:
this is the reason why it is necessary to use both p?þ and pþ? in the general case.

Proposition 4.3. We use the hypothesis and notation of Definition 4.1.

(1) We have p?� ¼ Ypþ?Y
� and p�? ¼ Y�p?þY. More precisely:

Ypþ?ðpn n idÞ ¼ ðpnþ1 n idÞp?�Y;

Yp�?ðpn n idÞ ¼ ðpn�1 n idÞp?þY:

(2) We have E2 pþ� ¼ E2 p�þ ¼ 0 and

pnE2 ¼ E2ðpn�1 n idÞpþþ þ E2ðpnþ1 n idÞp��:

Proof. (1) We put u ¼ AdðUÞ. Using the formulae ~VVðpa n 1Þ ~VV � ¼ d̂dðpaÞ and
V �ð1n paÞV ¼ d̂dðpaÞ for the dual coproduct, and the fact that pn commutes to U , we see
that

~VV �ðpn n 1Þ ~VV ¼ ðU n 1ÞSV �SðUpnU n 1ÞSVSðU n 1Þ

¼ ðun idÞs
�
V �ð1n pnÞV

�
¼ ðun idÞsd̂dðpnÞ:

We use this expression in conjunction with the definition of Y:

Ypþ?ðpn n 1ÞY� ¼ ~VVðpn n p1Þðun idÞsd̂dðpnþ1Þ ~VV �

¼ ð1n p1Þd̂dðpnÞ ~VVðun idÞsd̂dðpnþ1Þ ~VV � ¼ d̂dðpnÞðpnþ1 n p1Þ:

To prove that the last expression is equal to p?�ðpnþ1 n p1Þ, it is enough to check that we
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obtain p?� by summing it over n. But ðpn n p1Þd̂dðpn 0 Þ vanishes as soon as n 0 3 nG 1, so
that

P
ðpnþ1 n p1Þd̂dðpnÞ þ p?þ ¼

P�
ðpnþ1 n p1Þd̂dðpnÞ þ ðpn n p1Þd̂dðpnþ1Þ

�
¼

�P
ðpn n p1Þ

��P
d̂dðpn 0 Þ

�
¼ idK :

(2) The last point of Proposition 3.7 shows that pkE2ðpl n p1Þ equals
E2d̂dðpkÞðpl n p1Þ. In particular E2ðpn n p1Þp?þ ¼ pnþ1E2 p?þ and similarly

E2ðpn n p1Þp?� ¼ pn�1E2 p?�:

On the other hand one has, using Propositions 3.6 and 4.3:

E2ðpn n p1Þp�? ¼ E1Yðpn n p1Þp�? ¼ E1ðpn�1 n p1Þp?þY

¼ pn�1E1 p?þY ¼ pn�1E2 p�?;

and similarly

E2ðpn n p1Þpþ? ¼ pnþ1E2 pþ?:

As a result E2ðpn n p1Þp�þ equals both pnþ1E2 p�þ and pn�1E2 p�þ, so that it must
vanish, and in the same way E2ðpn n p1Þpþ� ¼ 0. In particular pnE2 ¼ pnE2ðpþþ þ p��Þ,
and the last statement of the proposition results then from the identities

pnE2 p?þ ¼ E2ðpn�1 n p1Þp?þ and pnE2 p?� ¼ E2ðpnþ1 n p1Þp?�

that we proved above. r

Until now we have used a very minimal notion of ‘‘tree’’ for our quantum Cayley
graphs, namely the fact that the corresponding classical Cayley graph should be a classical
tree. However this notion is too weak for our purposes, because it doesn’t take into account
multiplicity issues that appear in the quantum case. More precisely, let us define the ‘‘full’’
classical Cayley graph G associated to ðS; p1Þ in the following way:

v ¼ IrrC; e ¼ fða; a 0; g; iÞ j g A D; a 0 H an g with multiplicity order ig;

eða; a 0; g; iÞ ¼ ða; a 0Þ; yða; a 0; g; iÞ ¼ ða 0; a; g; iÞ:

Here D stands for the set of corepresentations associated with p1, like in Remark 3.2.1. The
image of G by e is the classical Cayley graph g of Definition 3.1, but the map e needs not to
be injective in general. The component g of an edge ða; a 0; g; iÞ is called the direction of the
edge. In the rest of this paper, we will assume that the full classical Cayley graph G with
origin 1C is a ‘‘directional tree’’, meaning that it is a tree and that the ascending edges
starting from a given vertex have pairwise di¤erent directions.

In Lemma 4.4 we state some basic results about classical Cayley graphs and give a
corepresentation-theoretic formulation of the extra assumptions introduced above. Propo-
sition 4.7 shows that our framework is the right one for the study of free quantum groups,
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i.e. free products of orthogonal and unitary free quantum groups [16], [5]. Finally we prove
that the quantum ascending orientation KþþHK behaves nicely in this framework: the
target operator induces a bijection between ascending edges and vertices orthogonal to the
origin, exactly like in the classical case.

Lemma 4.4. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS such

that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph g is a tree and denote

by ðan gÞþ (resp. ðan gÞ�) the sum of the subobjects of ðan gÞ which are further from (resp.

closer to) 1C than a.

(1) For every a A IrrC one has jaj ¼ jaj in g.

(2) The full classical Cayley graph G is a directional tree i f f

— for all a A IrrC and g A D, ðan gÞþ is irreducible or zero and

— for all a A IrrC and g3 g 0 A D, ðan gÞþ and ðan g 0Þþ are inequivalent or

zero.

(3) We assume that G is a directional tree. For any ða; gÞ A IrrC�D, one has

ðan gÞþ ¼ 0 i f f dim g ¼ 1 and a is the target of an ascending edge with direction g.

(4) If G is a directional tree and ða; bÞ is an ascending edge then dim bf dim a, with

equality i f f the corresponding direction g A D has dimension 1.

Proof. (1) For this first point g does not need to be a tree. Because D ¼ D, it is
enough to prove the following property: jaje n i f f there exist elements g1; . . . ; gn A D such
that aH g1 n � � �n gn. We proceed by induction over n: for n ¼ 0 the property is satisfied
because aH 1C , a ¼ 1C. Assume now that the property is satisfied for a given nf 0 and
consider an a A IrrC such that jaj ¼ n þ 1. By definition of g there exist b A v and g A D
such that jbj ¼ n and aH bn g, and the induction hypothesis for b gives the desired in-
clusion aH g1 n � � �n gn n g. Assume conversely that aH g1 n � � �n gnþ1 and let ðbkÞ be a
maximal orthogonal family of irreducible subobjects of g1 n � � �n gn. Because a is irre-
ducible the inclusion aH

L
ðbk n gnþ1Þ implies that aH bk n gnþ1 for some k. By induc-

tion hypothesis one has jbkje n, hence jaje n þ 1.

(2) Recall that the endpoints map e induces a morphism from G onto g, the latter
one being a tree. Therefore G is a tree i f f e is injective, and it is enough to check it on the
ascending orientation eþH e: this leads to the condition that the subobjects ðan gÞþ, for a
given a, should have pairwise di¤erent subobjects without multiplicity. The tree G is then
directional with respect to the origin 1C i f f the corepresentations ðan gÞþ have at most one
subobject.

(3) and (4) We proceed again by induction on the distance to the origin: let ða; bÞ
be an ascending edge with direction g and assume that dim bf dim a, with equality
i f f dim g > 1. Take g 0 A D, the assumption on G shows that ðbn g 0Þ ¼ ðbn g 0Þþ or
ðbn g 0Þ ¼ al ðbn g 0Þþ. In the first case, which can only happen when ðbn g 0Þþ3 0, one
has clearly dimðbn g 0Þþ f dim b with equality i f f dim g 0 ¼ 1. On the other hand, we are in
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the second case i f f g 0 ¼ g, because of the equivalence aH bn g 0 , bH an g 0. Moreover
one has then ðbn g 0Þþ ¼ 0 i f f dim b dim g 0 ¼ dim a, which is equivalent to dim g 0 ¼ 1 by
induction hypothesis. If on the contrary dim g 0 ¼ dim g > 1, the strict case of the induction
hypothesis gives

dimðbn g 0Þþ ¼ dim b dim g 0 � dim af 2 dim b � dim a > dim b: r

Proposition 4.5. Let S be a full Woronowicz C �-algebra and p1 a central projection of

ŜS such that Up1U ¼ p1 and p0 p1 ¼ 0. If the full classical Cayley graph G is a directional

tree, then

— S is a free product of a finite number of free Woronowicz C �-algebras AoðQiÞ and

AuðQ 0
jÞ, with QiQi A C id and Q 0

j invertible,

— p1 is the sum of the central supports of the respective fundamental corepresentations

of these Woronowicz C �-algebras.

Conversely the full classical Cayley graph G of any such pair ðS; p1Þ is a directional

tree.

Proof. The classical graph g being a tree, the set IrrC of its vertices lies in one-to-
one correspondence with the set of paths without half-turns starting from the origin 1C.
Because g is isomorphic to the full graph G, these paths are characterized by the finite se-
quences of the directions they follow. Finally, Lemma 4.4 shows that the finite sequences
ðgiÞ of elements of D that arise in such a way are exactly the ones that fulfill the condition
giþ1 3 gi or dim giþ1 > 1 for each i.

For every pair fg; ggHD with g ¼ g (resp. g3 g), the universal property of free
quantum groups gives a Hopf homomorphism from some AoðQÞ (resp. AuðQÞ) onto S,
where Q is a matrix such that QQ A C id (resp. is invertible). By universality of free
products, one obtains then a surjective Hopf homomorphism F : F ! S, where F is some
finite free product of free quantum groups. By definition, for each factor AoðQÞ;AuðQÞHF

the fundamental corepresentation U and its conjugate are mapped by idnF onto the
corresponding pair fg; ggHD.

On the other hand, the starting remarks on the structure of g show that IrrC is the
monoid generated by D and the relations fgg ¼ gg ¼ 1 j g A D; dim g ¼ 1g. Hence F induces
a bijection between IrrC and the set IrrF of irreducible corepresentations of F (up to
equivalence)—see [19], [4], [5] for the description of IrrF and notice that AoðQÞ and AuðQÞ
are respectively isomorphic to C �ðZ=2ZÞ and C �ðZÞ when dim Q ¼ 1. This proves, using
[21] and the fact that we are dealing with full Woronowicz C �-algebras, that F is injective.
The statement that G is a directional tree for any free product of free quantum groups
follows easily from the above mentioned description of IrrF. r

Example 4.6 (free quantum groups). Let us picture the simplest cases of Proposition
4.5. When dim Q > 1 and QQ A C id, the classical Cayley graph of AoðQÞ endowed with its
fundamental corepresentation is the half line with vertices at the integers. When dim Q > 1
and Q is invertible, the classical Cayley graph of AuðQÞ is drawn in Figure 1. r
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Proposition 4.7. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree. Then the restriction of E2 to Kþþ is injective and its image is ð1 � p0ÞH.

Proof. Let a A IrrC and g A D be such that jaj ¼ n and ðan gÞþ 3 0. The subspace

ðpa n pgÞK is irreducible with respect to the representation p̂p4 of ŜSn4, and equivalent to
ðan gÞn ðan gÞ. By definition, p?þðpa n pgÞ ¼ d̂dðpnþ1Þðpa n pgÞ, so that p?þðpa n pgÞK
is equivalent to ðan gÞþ n ðan gÞ with respect to the representation p̂p4 � ðd̂dn idn idÞ of
ŜSn3. Similarly, and thanks to the first point of Lemma 4.4, the subspace pþ?ðpa n pgÞK is
equivalent to ðan gÞn ðan gÞþ with respect to the representation p̂p4 � ðidn idn d̂dÞ.
Finally, pþþðpa n pgÞK is equivalent to ðan gÞþn ðan gÞþ for the representation

p̂p4 � ðd̂dn d̂dÞ of ŜS n ŜS, and therefore irreducible by hypothesis.

Recall now from Proposition 3.7 that E2 intertwines p̂p4 � ðd̂dn d̂dÞ and p̂p2. Hence the
restriction of E2 to ðpa n pgÞKþþ is a multiple of an isometry, and one can compute the
corresponding norm by considering the image of particular vectors, for instance characters.
One has by Proposition 3.6

E2 pþþðwan wgÞ ¼ E2 p?þðwa n wgÞ ¼ E2d̂dðpnþ1Þðwa n wgÞ

¼ pnþ1E2ðwan wgÞ ¼ pnþ1ðwangÞ

¼ pnþ1ðwðangÞ� þ wðangÞþÞ ¼ wðangÞþ :

The norm in H of the character of an irreducible corepresentation equals 1 (cf. [20], th. 5.8),
so that one eventually gets the following lower bound for the norm of E2 pþþðpa n pgÞ:

kE2 pþþðpa n pgÞk ¼
kwðangÞþk

kpþþðwan wgÞk
f

kwðangÞþk
kwan wgk

¼ 1:ð8Þ

To conclude, let us remark that E2 pþþ maps the respective orthogonal subspaces
pþþðpa n pgÞK onto the subspaces pðangÞþH, which are pairwise di¤erent by hypothesis,
hence orthogonal, and whose sum equals ð1 � p0ÞH. The operator E2 is therefore injective
and has dense image in ð1 � p0ÞH, but this image is closed by (8). r

Remark 4.8. We will need in Section 8.1 to have a slightly more general and more
precise result than (8). Let H be the algebraic direct sum of the subspaces pkH, and let
E2 be the operator defined on HnH in the same way as E2, that is, by Proposition 3.6,

u

1C u

Figure 1. Classical Cayley graph of the unitary free quantum group.
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coming from the multiplication of S. Let us also extend p?þ to HnH by putting
P?þ ¼

P
d̂dðpnþkÞðpn n pkÞ: we have then E2P?þðidn p1Þ ¼ E2 p?þ ¼ E2 pþþ. The first ar-

guments of the preceding proof are still valid if one replaces g with any b A IrrC: as a
matter of fact the hypothesis implies that an b contains at most one subobject d with
jdj ¼ jaj þ jbj. If such a d exists one gets the following generalization of (8):

kE2P?þðpa n pbÞk ¼ kd̂dðpdÞðwa n wbÞk
�1:

Let us remark that wa (resp. tað1Þ) generates the invariant line of paH (resp. Ha nHa)
with respect to the action of ŜS. Moreover one has kwak ¼ 1 and ktað1Þk ¼

ffiffiffiffiffiffiffi
Ma

p
, so that

wa in fact corresponds to tað1Þ=
ffiffiffiffiffiffiffi
Ma

p
in the isomorphism paH FHa nHa, up to a phase

factor. Consequently, in the isomorphism paH n pbH FHa nHb nH
b
nHa the vector

d̂dðpdÞðwa n wbÞ corresponds to

�
d̂dðpdÞn idn id

��
tanbð1Þ

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

p
¼ tdð1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

p
;

if one isometrically identifies Hd with the equivalent subspace of Ha nHb. We therefore
get the following exact formula, from which (8) can be recovered by noticing that
Md eManMb:

kE2P?þðpa n pbÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

Md

r
: r

5. Geometric edges

In this section we will study the Hilbert space Kg ¼ KerðYþ idÞ when the classical
Cayley graph G is a directional tree. We consider Proposition 4.7 as an evidence that Kþþ
provides a good notion of ‘‘quantum ascending edges’’, and we would similarly like to
know whether Kg provides a good notion of ‘‘quantum geometric edges’’. By this we mean
that there should be exactly one geometric edge for each ascending edge, which can be
more rigorously expressed in the hilbertian framework by the fact that the restriction
pþþ : Kg ! Kþþ should be invertible.

Of course the study of Kg ¼ KerðYþ idÞ is closely related to the problem of the
non-involutivity of the reversing operator Y. The next proposition provides a ‘‘weak in-
volutivity’’ property which we will use for the proof of Theorem 5.3, as well as a technical
corollary obtained in Lemma 5.2. Notice that ðpþþ þ p��ÞK behaves as a subspace of
‘‘quasi-classical’’ quantum edges in this regard.

Proposition 5.1. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree. Then we have, for all n A N:

ðpþþ þ p��ÞYnðpþþ þ p��Þ ¼ ðpþþ þ p��ÞY�nðpþþ þ p��Þ:

Proof. Inserting id ¼ pþþ þ pþ� þ p�þ þ p�� between the occurrences of YG1 in
YGn and developing, the statement of the theorem becomes an equality between two sums
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of terms looking like p� 0
0
; � 0

0
YG1p�1; � 01

YG1 � � �YG1p�n; �n
. We will in fact prove that these terms

are pairwise equal: for �i; �
0
i A fþ;�g with i A ½½0; n��, one has

p� 0
0
; � 0

0
Yp�1; � 01

Y � � �Yp�n�1; � 0n�1
Yp�n; �n

ð9Þ

¼ p� 0
0
; � 0

0
Y�1p� 0

1
; �1
Y�1 � � �Y�1p� 0

n�1
; �n�1

Y�1p�n; �n
:

Let us proceed by induction over n A N, calling ‘‘rank 0’’ the trivial equality
p� 0; � 0 p�; � ¼ p� 0; � 0 p�; �. Choose nf 1. As a first step, assume that there exists k A ½½1; n � 1��
such that �k ¼ � 0k. Then the conclusion results straightforwardly from two applications
of the induction hypothesis at ranks k and n � k, with ð�i; �

0
iÞ0eiek and ð�i; �

0
iÞkeien

respectively.

We assume now that �i ¼ �� 0i for each i. If one side of (9) is non-zero, we necessarily
have ð�i; �

0
iÞ ¼ ð�� 00;��nÞ for all indices i: as a matter of fact, Proposition 4.3 shows that the

equalities �iþ1 ¼ �� 0i are required for the products in (9) not to vanish. In particular, we
have then � 00 ¼ ��n. This proves that the equalities from the first step are su‰cient to get
the identities p��Y

np�� ¼ p��Y
�np�� and pþþY

npþþ ¼ pþþY
�npþþ. Moreover, taking

the adjoint allows to switch from � 00 ¼ �1 to � 00 ¼ 1, so that it only remains to prove the
equality

pþþYp�þY � � �Yp�þYp�� ¼ pþþY
�1pþ�Y

�1 � � �Y�1pþ�Y
�1p��:

By adding terms from the first step we rather focus on the following equivalent
equality:

pþþY
np�� þ p��Y

np�� ¼? pþþY
�np�� þ p��Y

�np��:

Using the fact from Proposition 4.7 that the target operator E2 is injective on Kþþ, we can
compose on the left by E2 and use Proposition 4.3 to get another equivalent equality:
E2Y

np�� ¼ E2Y
�np��. But this is true since we have, from Proposition 3.6 and the defini-

tion of E2: E2Y
2 ¼ E1Y ¼ E2, hence E2Y

2k ¼ E2Y
�2k ¼ E2 and E2Y ¼ E2Y

�1. r

Lemma 5.2. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS such

that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a di-

rectional tree. Then there exists a unique unitary operator W : Kþ� ! K�þ such that

Ek A N Wðpþ�YÞk
pþþ ¼ ðp�þY

�1Þk
pþþ:

Moreover we have Wpþ�Y ¼ p�þY
�1W and p��Y ¼ p��Y

�1W on Kþ�.

Proof. Let X (resp. X 0) be the operator from Kþþn l2ðNÞ to Kþ� (resp. K�þ) de-
fined by Xðxn ekÞ ¼ 2�kðpþ�YÞkx (resp. X 0ðxn ekÞ ¼ 2�kðp�þY

�1Þkx). Thanks to the
coe‰cients 2�k, the operators X and X 0 are bounded, and it is easy to see that their ad-
joints are resp. given by

X � ¼
P

2�kTk pþþðY�1pþ�Þk and X 0� ¼
P

2�kTk pþþðYp�þÞk;

where we put TkðxÞ ¼ xn ek for any x A Kþþ. Let z be an element of Ker X �, for every k
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and n we have pþþðY�1pþ�Þkðpn n idÞz ¼ 0. In particular ðY�1pþ�Þnðpn n p1Þz vanishes:
by Proposition 4.3 it is an element of ðp0 n idÞK , which is contained in Kþþ. By a finite
descending induction on k A ½½0; n��, we deduce that

ðY�1pþ�Þkðpn n p1Þz ¼ pþþðY�1pþ�Þkðpn n p1ÞzþYðY�1pþ�Þkþ1ðpn n p1Þz

vanishes, and in particular ðpn n idÞz ¼ 0 for any n. Hence X � is injective and X has dense
image. In the same way, X 0 has dense image.

To prove the existence and the uniqueness of W , which is characterized by the iden-
tity WX ¼ X 0, it is therefore enough to show that kXhk ¼ kX 0hk for any h A Kþþ n l2ðNÞ,
or as well, that X �X ¼ X 0�X 0. We will work on each subspace Kþþn ei separately, and we
are thus led to prove for every k and l the equality

pþþðY�1pþ�Þ lðpþ�YÞkpþþ ¼ pþþðYp�þÞ lðp�þY
�1Þkpþþ;ð10Þ

which can also be written

pþþY
�1pþ� � � � pþ�Y

�1ð1 � p��ÞYpþ� � � � pþ�Ypþþ

¼ pþþYp�þ � � � p�þYð1 � p��ÞY�1p�þ � � � p�þY
�1pþþ:

We proceed by induction on minðk; lÞ and distribute ð1 � p��Þ on both sides: the terms
coming from p�� are equal thanks to Equation (9) of Proposition 5.1, and the terms com-
ing from 1 are equal by induction hypothesis. When kl ¼ 0 but ðk; lÞ3 ð0; 0Þ, both sides of
(10) vanish, and when k ¼ l ¼ 0, (10) is trivial.

Because X has dense image, it su‰ces to check the equalities Wpþ�Y ¼ p�þY
�1W

and p��Y ¼ p��Y
�1W on the image of ðpþ�YÞk

pþþ, for every k. The first one follows
immediately from the definition of W :

ðWpþ�YÞðpþ�YÞk
pþþ ¼ Wðpþ�YÞkþ1

pþþ ¼ ðp�þY
�1Þkþ1

pþþ

and

ðp�þY
�1WÞðpþ�YÞk

pþþ ¼ p�þY
�1ðp�þY

�1Þk
pþþ ¼ ðp�þY

�1Þkþ1
pþþ:

For the second one, we use furthermore Equation (9) from Proposition 5.1:

ðp��Y
�1WÞðpþ�YÞk

pþþ ¼ p��Y
�1ðp�þY

�1Þk
pþþ

¼ ðp��YÞðpþ�YÞk
pþþ: r

Theorem 5.3. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree. Then the orthogonal projection from Kg to Kþþ is injective and its image is

given by

pþþKg ¼ fz A Kþþ j bh A Kþ� ðid þ pþ�YÞðhÞ ¼ pþ�Yzg:
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Proof. By definition, a vector x A K lies in Kg i f f YðxÞ ¼ �x, which we split in two
equations: p?�x ¼ �Ypþ?x and p�?x ¼ �Y�1p?þx. Let us first analyze these conditions
with respect to the decomposition K ¼

L
ðpk n idÞK , using Proposition 4.3:

En A N p?�ðpn n idÞx ¼ �Ypþ?ðpn�1 n idÞx;

En A N p�?ðpn n idÞx ¼ �Y�1p?þðpn�1 n idÞx:

If pþþx ¼ 0, this gives a linear induction equation for
�
ðpn n idÞx

�
n
, and since

ðp0 n idÞx ¼ pþþðp0 n idÞx ¼ 0 the whole sequence vanishes. Hence the restriction of pþþ
to Kg is injective.

Now we use the decomposition id ¼ pþþ þ pþ� þ p�þ þ p�� to get a new system
equivalent to the conditions p?�x ¼ �Ypþ?x and p�?x ¼ �Y�1p?þ, which characterize
vectors in Kg:

pþ�x ¼ �pþ�Ypþþx� pþ�Ypþ�x;ð11Þ

p��x ¼ �p��Ypþþx� p��Ypþ�x;ð12Þ

p��x ¼ �p��Y
�1pþþx� p��Y

�1p�þx;ð13Þ

p�þx ¼ �p�þY
�1pþþx� p�þY

�1p�þx:ð14Þ

Let z A Kþþ be as in the statement of the theorem: there exists h A Kþ� such that
ðid þ pþ�YÞðhÞ ¼ pþ�Yz. Put x ¼ z� h� Whþ p��Yðh� zÞ. In this case, the above sys-
tem can be written in the following way:

�h ¼ �pþ�Yzþ pþ�Yh;ð11 0Þ

p��Yðh� zÞ ¼ �p��Yzþ p��Yh;ð12 0Þ

p��Yðh� zÞ ¼ �p��Y
�1zþ p��Y

�1Wh;ð13 0Þ

�Wh ¼ �p�þY
�1zþ p�þY

�1Wh:ð14 0Þ

We can notice that (11 0) amounts to the hypothesis on z and h, whereas (12 0) is trivial.
Proposition 5.1 and Lemma 5.2 show that (13 0) is always satisfied. Finally the hypothesis
on z and h yields Wh ¼ Wpþ�Yz� Wpþ�Yh, and (14 0) follows then from Lemma 5.2.
Hence x lies in Kg and z ¼ pþþx is in pþþKg. The reverse inclusion can easily be obtained
from (11): if z equals pþþx with x A Kg, we put h ¼ pþ�x and the above mentioned equa-
tion reads then ðid þ pþ�YÞðhÞ ¼ pþ�Yz, as already noticed. r

6. Edges at infinity: the set

The expression for pþþKg obtained in Theorem 5.3 is trivial in the classical case be-
cause the projection pþ� vanishes then, but it has to be analyzed in greater detail in the
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quantum case. More precisely, we need to understand the interaction between pþ� and Y,
and we will see that it can be described by a purely quantum object: the space of ‘‘edges at
infinity’’ Ky, that we introduce in Definition 6.1.

This definition bases on the simple remark that the operator pþ�Ypþ� maps
ðpk n idÞKþ� to ðpkþ1 n idÞKþ� by Proposition 4.3, and acts therefore as a right shift in
the decomposition of Kþ� given by the distance to the origin in the classical Cayley graph.
It is then very natural to introduce the associated inductive limit Ky. Proposition 6.2 serves
as a more precise motivation for this definition and shows that the existence of Ky is an
obstruction to the surjectivity of pþþ : Kg ! Kþþ. Notice that in the classical case, the
subspaces ðpk n idÞKþ� vanish, so that Ky equals zero.

Definition 6.1. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0p1 ¼ 0. Assume that the classical Cayley graph associated with
ðS; p1Þ is a tree.

(1) Put r ¼ �pþ�Ypþ�, s ¼ pþ�Ypþþ and define the inductive limit Hilbert space
Ky ¼ lim�!

�
ðpk n idÞKþ�; r

�
.

(2) Let Rk be the natural morphism from ðpk n idÞKþ� to Ky, and denote by R the
linear map

P
kf0

Rk defined on
L
alg

ðpk n idÞKþ�.

Proposition 6.2. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree.

(1) The map Rs extends to a co-isometry from Kþþ to Ky.

(2) The subspace pþþKg is contained in Ker Rs. Moreover if the Rk are injective one

has, denoting by pfk the sum
P
ifk

pi n id:

pþþKg ¼ fz A Ker Rs j ðkR�1
k RspfkzkÞk A l2ðNÞg:

Proof. (1) We start with a simple computation, using Proposition 4.3:

rr� þ ss� ¼ pþ�Ypþ�Y
�pþ� þ pþ�YpþþY

�pþ�

¼ pþ�Ypþ?Y
�pþ� ¼ pþ�YY�pþ� ¼ idKþ� :

Notice that R0 ¼ 0 because pþ�ðp0 n idÞ ¼ 0, and that Rkþ1r ¼ Rk for any k A N, by def-
inition. We have then, denoting by pek the sum

P
iek

pi n id:

ðRspekÞðRspekÞ� ¼
Pk�1

i¼0

Riþ1ss�R�
iþ1 ¼

Pk�1

i¼0

Riþ1ð1 � rr�ÞR�
iþ1

¼
Pk�1

i¼0

ðRiþ1R�
iþ1 � RiR

�
i Þ ¼ RkR�

k:
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The maps Rk being contractive, it follows that Rspek and Rs itself are contractions. Be-
cause pek converges to the identity in the *-strong topology, ðRspekÞðRspekÞ� converges
strongly to ðRsÞðRsÞ�, and so it remains to show that RkR�

k converges to the identity of Ky.
This is actually a general fact for contractive inductive limits: for any l f k f 0 and any
y A ðpk n idÞKþ�, we have

kRlR
�
l ðRk yÞ � Rk yk2

e kR�
l Rk y � rl�kyk2

and

kR�
l Rk y � rl�kyk2 ¼ kR�

l Rk yk2 � 2<ðR�
l Rk y j rl�kyÞ þ krl�kyk2

¼ kR�
l Rk yk2 � 2kRk yk2 þ krl�kyk2

e krl�kyk2 � kRk yk2:

This upper bound tends to zero as l goes to infinity, by definition of the norm of Ky. The
union

S
Im Rk being dense in Ky, this proves that RlR

�
l !s id.

(2) Let z A pþþKg: by Theorem 5.3, there exists h A Kþ� such that ð1 � rÞh ¼ sz. This
can also be written

Ek A N� ðpk n idÞh ¼ sðpk�1 n idÞzþ rðpk�1 n idÞh

, Ek A N� ðpk n idÞh ¼
Pk�1

i¼0

rk�i�1sðpi n idÞz

) Ek A N� Rkðpk n idÞh ¼ Rspek�1z:ð15Þ

The right-hand side of this equality converges to Rsz when k goes to infinity, whereas the
left-hand side tends to zero. Hence pþþKg HKer Rs. Now, if the Rk are injective, the im-
plication leading to (15) is an equivalence, so that a vector z A Kþþ is in pþþKg i f f (15)
defines a vector h A Kþ� i f f the orthogonal sequence ðR�1

k Rspek�1zÞk is summable in Kþ�.
Finally, we have clearly Rspek�1z ¼ �Rspfkz when z lies in Ker Rs. r

The rest of this section will be devoted to a more detailed study of Ky. We first want
to compute exactly the weights of the ‘‘shift’’ pþ�Ypþ�: this is accomplished in Lemma 6.3
and relies on the technical results of Section 2. It is then easy to show that the maps Rk are
indeed injective, and therefore that Ky is infinite-dimensional in the quantum case. Using
the explicit result of Lemma 6.3 we are also able in Theorem 6.5 to make more precise the
second statement of Proposition 6.2: it appears that Ky is the only obstruction the non-
surjectivity of pþþ : Kg ! Kþþ, except when the free product ðS; dÞ under consideration
contains one of the ‘‘exceptional cases’’

Ao

0 1

�1 0

� �
; Ao

0 1

1 0

� �
and Au

1 0

0 1

� �
:

Let ðg1; . . . ; gkÞ be a finite sequence of directions gi A D. There is at most one vertex
a A IrrC such that the geodesic from 1C to a follows successively these directions: we will
then put a ¼ g1 � � � gk. Now choose g A D and put g2l ¼ g, g2lþ1 ¼ g. We denote by ak the
vertex gg � � � gk, when it exists. Lemma 4.4 shows that the set of values of k is f0; 1g when
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dim g ¼ 1 and N otherwise. We define in both cases the associated projection
Pg ¼

P
pak

n pgk
. It is a central element of MðŜS n ŜSÞ, hence it commutes to the projec-

tions p?þ and pþ?. Moreover one has by Proposition 3.7:

YPg ¼
P

Yðpak
n pgk

Þ ¼
P

d̂dðpak
Þð1n pgk

ÞY

¼
P�

p?þðpak�1
n pgk

Þ þ p?�ðpakþ1
n pgk

Þ
�
Y ¼ PgY:

On the other hand, the projections pþ? and p?þ commute respectively to the repre-
sentations p̂p4 � ðd̂dn idn idÞ and p̂p4 � ðidn idn d̂dÞ of ŜS n ŜS n ŜS on K, by definition. In
particular they both commute to the representation p̂p4 � d̂d3 of ŜS, as well as Y: see Proposi-
tion 3.7. Hence pþ?; p?þ and Y all commute to the projections ql ¼ p̂p4 d̂d

3ðp2lÞ. Let us recall
in the case dim g > 1 that ðpak

n pgk
ÞKþ� is equivalent to ak�1 n akþ1 with respect to

p̂p4 � d̂d3, so that qlðpk n idÞPgKþ� is non-zero i f f l A ½½1; k��, and is then irreducible and
equivalent to a2l . In the rest of this section we will study the inductive system�
ðpk n idÞKþ�; r

�
in the decomposition given by the projection qlPg.

Lemma 6.3. Let Y be the reversing operator of a quantum Cayley tree, and choose

g A D with dim g > 1. We put mk ¼ Mak
and m�1 ¼ 0. Let �1; �

0
1; �2; �

0
2 A fþ;�g, with

� 02 ¼ ��1. For any k f 1 and l A ½½1; k�� the operator p�2; � 02
Yp�1; � 01

is a multiple of an isometry

on ðpk��1
n idÞp�1; � 01

qlPgK and

kðpk n p1Þp�2; � 02
Yp�1; � 01

qlPgk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlml�1

mkmk�1

r
if �1�

0
1 3 �2�

0
2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � mlml�1

mkmk�1

r
if �1�

0
1 ¼ �2�

0
2:

8>>>><
>>>>:

Proof. We can assume here that S ¼ AuðQÞ or AoðQÞ because dim g > 1: see the
proof of Proposition 4.5. We start with pþ�Ypþ�, by reorganizing the terms of the product
and composing on the left by Y�:

kðpk n idÞpþ�Ypþ�qlPgk ¼ kðY�pþ?YÞp?�ql pþ?ðpak�1
n pgk

Þk:

We know from the proof of Proposition 4.7 that the space pþ?ðpak�1
n pgk

ÞK is irreducible
for the representation p̂p4 � ðidn idn d̂dÞ of ŜS n ŜS n ŜS and identifies with ak�1 n gk n ak.
Let us study how Y�pþ?Y; p?� and ql act in this identification.

— We have pþ? ¼ p̂p4ðd̂dn idn idÞð1n pÞ, where p ¼
P

d̂dðpnþ1Þðp1 n pnÞ. Lemma

3.7 shows that Y�pþ?Y ¼ p̂p4ðidn idn d̂dÞð1n pÞ, which hence acts on ak�1 n gk n ak as
1n p, i.e. as the projection onto ak�1 n akþ1.

— We know again from the proof of Proposition 4.7 that p?� acts in the identifica-
tion like the projection of ak�1 n gk n ak onto ak�2 n ak.

— Finally ql ¼ p̂p4 d̂d
3ðp2lÞ corresponds to the projection of ak�1 n gk n ak onto the

sum of its subspaces that are equivalent to a2l .

Therefore Lemma 2.4 gives exactly the desired result for kðpk n idÞpþ�Ypþ�qlPgk.
We get then the norm of ðpk n idÞpþ�YpþþqlPg by noticing that the sum of the squares of
both norms equals 1, and we proceed in the same way for the other cases. r
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Remarks 6.4. (1) When l ¼ 0—and this includes the cases when k ¼ 0 or
dim g ¼ 1—, we automatically have pþ�q0 ¼ p�þq0 ¼ 0. In particular

pþþYp��q0 ¼ Yp��q0;

and therefore Lemma 6.3 is replaced in this case by the statement that pþþYp�� and
p��Ypþþ are isometric on p��q0K and pþþq0K. In fact the subspace q0K , the analogous
subspace p̂p2d̂dðp0ÞH and the corresponding restrictions of Y and E are exactly the hilbertian
objects associated to the classical Cayley graph g.

(2) Lemma 6.3 only concerns the ‘‘subtrees’’ PgK, but this is enough to get results
about the whole of K, thanks to a ‘‘cut-and-paste’’ process that we explain now. Let I be
the set of ordered pairs ðb; gÞ A IrrC�D such that the last direction followed by the geo-
desic from 1C to b is di¤erent from g—including ð1C; gÞ for all g A D. For such a ðb; gÞ we
denote by bk the vertices on the ascending path starting from b and taking the directions
g; g; . . . , and we call Pb; g the sum of the pbk

n pgk
. Because the edges of the classical Cayley

graph g are walked through once by exactly one of these paths, we see that K is the or-
thogonal direct sum over I of the Pb; gK. Notice that Pg ¼ P1C; g.

Now we use the ‘‘extended target operator’’ E2 : HnH ! H, i.e. the operator in-
duced in the GNS construction of the Haar state by the multiplication of S. Take ðb; gÞ A I
and denote by ak the objects constructed from ð1C; gÞ as above. By definition of I we have
ðbn gÞ� ¼ 0 hence b1 ¼ bn g. More generally, bn ak is irreducible and equivalent to
bk for every k, so that the restriction of E2 n id to pbH nPgK is an isometry onto Pb; gK:
this is a trivial case of Proposition 4.7 and Remark 4.8. For the same reason one has
ðbk n gkÞþ F bn ðak n gkÞþ, which implies that p?þðE2 n idÞ ¼ ðE2 n idÞðidn p?þÞ, and
the similar relations for pþ?. Moreover we also have YðE2 n idÞ ¼ ðE2 n idÞðidnYÞ be-
cause S n 1 commutes to Y. r

Theorem 6.5. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree.

(1) The maps Rk are injective. As a result, the space Ky is infinite-dimensional when-

ever S is not co-commutative.

(2) If we have Mg 3 2 for all g A D, then pþþKg ¼ Ker Rs. Otherwise pþþKg is a

strict, dense subspace of Ker Rs.

Proof. (1) Thanks to the preceding Remark 6.4.2, it is enough to study the re-
strictions of the considered objects to the subspaces PgK with g A D. Let l A N, we can
suppose that l A ½½1; k��, and in particular that dim g > 1: otherwise pþ�ðpk n p1ÞqlPg ¼ 0
hence qlPgK doesn’t meet the definition set of Rk. Because the subspaces ðpk n idÞpþ�qlPg

are irreducible, and by definition of the norm of Ky, we have

kRkqlPgk ¼ limkrkþiðpk n idÞqlPgk ¼
Qy
i¼0

kpþ�Ypþ�ðpkþi n idÞqlPgk:

To prove that this infinite product is non-zero we use the quantitative result of

Vergnioux, Quantum Cayley trees126



Lemma 6.3. Recall from Lemma 2.1 that the sequence ðmkÞ satisfies the induction equation
mi�1 � m1mi þ miþ1 ¼ 0, so that we can write mi ¼ ðaiþ1 � a�i�1Þ=ða � a�1Þ for some
a > 1 when m1 > 2, and mi ¼ i þ 1 when m1 ¼ 2. It is now very easy to check that the
following infinite sum is finite:

Log
Qy
i¼k

kpþ�Ypþ�ðpi n idÞqlPgk ¼ 1

2

Py
i¼k

Log 1 � mlml�1

miþ1mi

� �
> �y:

Note that we have kRkqlPgk ! 1 when k ! y, and in particular the norm kqlPgR
�1
k k is

bounded with respect to k. We will need to know for the second point that it is even
bounded with respect to k and l, when m1 > 2. To see this, check that ml=mi e a�ði�lÞ when
l e i and conclude that

Ek f 1; l A ½½1; k�� LogkRkqlPgkf
1

2

Py
i¼1

Logð1 � a�2iÞ:

Now if there indeed exists a direction g A D with dim g > 1, the injectivity of Rk

implies that dim Ky > dimðpk n p1Þpþ�PgK ¼ dim ak�1 dim akþ1, which tends to infinity
with k according to Lemma 4.4.

(2) We will use the decomposition given by the qlPg to study the expression
of pþþKg obtained in Proposition 6.2, and in particular the operator Rspfk re-
stricted to Ker Rs. If l ¼ 0 we have pþþPgKg ¼ PgðKer RsÞ ¼ PgKþþ since we are
considering a classical graph. Now we assume that l f 1. In particular the map
s : ðpk n idÞqlPgKþþ ! ðpkþ1 n idÞqlPgKþ� is bijective for any k f l according to Lemma
6.3, and hence Rkþ1s : ðpk n idÞqlPgKþþ ! Ky is injective. Therefore it is possible to
unitarily identify all the subspaces ðpk n idÞqlPgKþþ to their common image Gl HKy in
such a way that Rkþ1sqlPg identifies with lk; l idGl

, where

lk; l ¼ kRkþ1sqlPgk ¼ kRkþ1qlPgk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlml�1

mkþ1mk

r
:

In particular the operator
�
ðpk n idÞz

�
k
7! ðRspfkzÞk from qlPgKþþ to GN

l identifies then

with the augmentation by Gl of the matrix Ll ¼ ðlj; l djfiflÞi; j.

(2a) We start with the case m1 ¼ Mg > 2, which is particularly simple. As a matter of
fact, Ll is then bounded, even as an operator from lyðNÞ to l2ðNÞ, and uniformly with
respect to l: we have

P
ifl

	P
j

jlj; ldjfij

2

¼
P
ifl

�P
jfi

kRjþ1qlPgk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlml�1

mjþ1mj

r �2

e
P
ifl

	P
jfi

a�ð jþ1�lÞ

2

¼ a2

ða2 � 1Þða � 1Þ2
;

using the same estimate for ml=mj as in the first point. As a result, for any vector z A PgKþþ
the sequence ðRspfkzÞk is square-summable. The operators R�1

k being uniformly bounded
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in our case, the sequence ðR�1
k RspfkzÞk is also square-summable. Therefore the condition

of Proposition 6.2 is satisfied by any vector in PgðKer RsÞ.

(2b) Now we address the case m1 ¼ 2. Let e > 0, there exists I f l such that
kRiqlPgkf 1 � e for every if I . We have then the following inequalities:

djfifIð1 � eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl þ 1Þl

ð j þ 2Þð j þ 1Þ

s
e lj; l djfifl e djfi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl þ 1Þl

ð j þ 2Þð j þ 1Þ

s

) djfifI ð1 � eÞ l

i þ j þ 2
e lj; l djfifl e

2l þ 2

i þ j þ 2

) lð1 � eÞ½di; jfImiþ1; jþ1�eLl þL�
l

and Ll e ð2l þ 2Þ½mi; j�;

where we put mi; j ¼ ði þ j þ 1Þ�1. The last two inequalities are understood in the co-
e‰cientwise meaning, but it is well known that this implies norm inequalities, because all
the coe‰cients are non-negative. Hence we have

lð1 � eÞ
2

k½di; jfImiþ1; jþ1�ke
1

2
kLl þL�

l ke kLlke ð2l þ 2Þk½mi; j�k:

Now we have in the left-hand (resp. right-hand) side a compact perturbation of (resp. ex-
actly) the Hilbert matrix M ¼ ½mi; j�, which is known from the theory of Hankel operators
to have a norm and an essential norm both equal to p=2 (cf. [11], th. 5.3.1). Hence we ob-
tain, letting furthermore e go to zero, the estimate lp=4e kLlke ðl þ 1Þp.

From this we conclude that every vector of qlPgKþþ satisfies the condition of Propo-
sition 6.2—recall that the operators qlPgR

�1
k are uniformly bounded with respect to k. As

a result, pþþKg is dense in
L

qlPgðKer RsÞ ¼ Ker Rs. However, pþþKg is not equal to
Ker Rs. As a matter of fact, the lower estimate we have obtained proves that there exist
vectors zl A qlPgKþþ such that kzlk ¼ 1=l and kðRspfkzlÞkkf p=4. Moreover one can
assume that RsðzlÞ ¼ 0: this only corresponds to composing Ll on the right by a co-rank
1 projection, which is a compact perturbation. One has then z ¼

P
l

zl A PgðKer RsÞ, but
ðRspfkzÞk is not square-summable. r

7. Edges at infinity: the action

In the previous section, the interest of the Hilbert space Ky mainly lays in its relation
with the Hilbert space of geometric edges, via the projection pþþ. The aim of this section is
to endow Ky with a representation of Sred, which will turn it into an interesting geometric
object on its own. On the way, we will be led to study certain aspects of the regular repre-
sentation Sred HLðHÞ which can be of independent use: see Lemma 7.1 and the remarks
after it.

A first step however will be to notice that Ky can easily be equipped with a repre-

sentation of ŜS, namely the inductive limit p̂py of the representation p̂p4 d̂d
3. As a matter of fact
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the image of p̂p4 d̂d
3 commutes to pþ�; pk n id and r. Recall from the preceding section that

the decomposition of ðpk n idÞKþ� into irreducible subspaces with respect to p̂p4 d̂d
3 are

given by the projections Pb; gql . The subspace Pb; gqlðpk n idÞKþ� is non-zero i f f dim g > 1
and jbj þ 1e l e k and is then equivalent to bn gg � � � g2l�2jbj n b. As a result p̂pyðpaÞKy

is irreducible if a3 1C and aH dn d for some d A IrrC, and vanishes else.

Lemma 7.1. Let p?þ be the left ascending projection of a quantum Cayley tree.
Choose g A D with dim g > 1 and let mk ¼ Mak

be the corresponding sequence of quantum

dimensions. Let a A Sred be a coe‰cient of g. Then the commutator ½an 1; p?þ� vanishes on

ð1 � PgÞK, and there exists a real number Ca > 0 such that

Ek A N k½an 1; p?þ�ðpk n idÞkeCam�1
k :

Proof. For this proof we can of course assume that k is greater than 2. It is enough
to study p?þ½an 1; p?þ�ðpk n idÞ because ½an 1; p?þ� ¼ ½an 1; p?þ�p?þ � p?þ½an 1; p?þ�.
We will use the ‘‘extended target operator’’ E2 : pgH nH ! H given by the product of S.
Denoting by ~aa the map

�
C ! H; 1 7! LhðaÞ

�
we have

p?þ½an 1; p?þ� ¼ p?þðE2 n idÞð~aan idKÞp?þ � p?þðE2 n idÞð~aan idKÞ

¼ ðE2 n idÞðd̂dn idÞðp?þÞðidn p?þ � 1Þð~aan idKÞ:

Hence it is enough to show that kP1ð1 � P2Þkem�1
k , where P1 and P2 are the respective

restrictions to pgH n pkH n p1H of ðd̂dn idÞðp?þÞ and ðidn p?þÞ. These projections act
through the left representation of ŜSn3 on Hn3, so that it su‰ces to look at their action on
L ¼ Hg nHa nHg 0 , with g 0 A D and jaj ¼ k.

Let HðgnaÞþ and HðgnaÞ� be the irreducible subspaces of HgnHa, the latter being
possibly vanishing. We let p?þ A MðŜS n ŜSÞ act on any representation space of ŜS n ŜS.
The image of P2 is then Hgn p?þðHanHg 0 Þ, whereas the image of P1 is the sum of
Lþ ¼ p?þðHðgnaÞþ nHg 0 Þ and L� ¼ p?þðHðgnaÞ� nHg 0 Þ. Let us first consider the case
when a is not of the form dd � � � dk for any d A D. Notice that we are automatically in this
case when dim g ¼ 1, because we restricted ourselves to the values k f 2. The co-
representation a can then be written as an irreducible tensor product a1 n a2, so that one has

Lþ ¼ p?þ
�
ðHðgna1Þþ nHa2

ÞnHg 0
�

¼ ðidn p?þÞ
�
Hðgna1Þþ n ðHa2

nHg 0 Þ
�

HHgnHa1
n p?þðHa2

nHg 0 Þ ¼ Hg n p?þðHa nHg 0 Þ;

and similarly L�H Im P2. In this case we therefore have ð1 � P2ÞP1 ¼ 0. One can check in
the same way that it is also the case when the geodesic from 1C to a does not start in the
direction g or does not end with the direction g 0.

Therefore it remains to consider the situation when g is the generator of some
copy of AoðQÞ or AuðQÞ in S, and a ¼ gg � � � gk, g 0 ¼ gk. In other words we have
HgnHa nHg 0 ¼ H1;k;1 with the notation of Lemma 2.5. Let us notice first that Lþ is the
unique irreducible subspace of H1;k;1 which is at distance k þ 2 from the origin 1C, and is
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therefore included in ðidn p?þÞðH1;k;1Þ. Hence it su‰ces to consider the restriction of P1

and P2 to the copies of Hk in H1;k;1. We are then exactly in the situation of Lemma 2.5,
with k 0 ¼ 1, G1 ¼ Im P1 and G2 ¼ Im P2. Because we are looking now at morphisms be-
tween irreducible subspaces, we can finally use the lemma to write

kð1 � P2ÞP1k2 ¼ 1 � kP2P1k2 ¼ m�2
k : r

Remarks 7.2. (1) Let ðmkÞk; ðm 0
kÞk be two sequences of quantum dimensions asso-

ciated to two directions g; g 0 A D. If m 0
1 fm1, it is easy to check by induction, using Point

(4) of Lemma 2.1, that m 0
kþ1=m 0

k fmkþ1=mk:

m 0
kþ1mk � mkþ1m 0

k ¼ ðm 0
1 � m1Þm 0

kmk þ ðm 0
kmk�1 � mkm 0

k�1Þf 0:

In particular we have m 0
k fmk for all k. If m1 is minimal (resp. maximal) amongst the

Mg with g A D and dim g > 1, we will call ðmkÞk the minimal (resp. maximal) sequence of
quantum dimensions for ðS; p1Þ.

(2) It is clear from the proof of the lemma that ½ p?þ; an 1�ðpk n idÞ vanishes as
soon as k f 2 if a is a coe‰cient of some g A D with dim g ¼ 1. Let us prove now that
the result of the lemma holds in fact for any a A SHSred if one uses the minimal sequence
of quantum dimensions to state it. To see this, assume that a satisfies the inequalities of
the lemma and let u be a coe‰cient of a corepresentation g A D. Because the algebra
S is spanned by such coe‰cients, it is enough to prove that au also satisfies the
same inequalities for some other constant Cau. We remark that ðun 1Þðpk n idÞK is
included in ðpk�1 n idÞK þ ðpkþ1 n idÞK, so that one can write, using the inequalities
mk emkþ1 em1mk:

k½aun 1; p?þ�ðpk n idÞke kðan 1Þ½un 1; p?þ�ðpk n idÞk

þ k½an 1; p?þ�ðun 1Þðpk n idÞk

e kakCum�1
k þ kukCaðm�1

k�1 þ m�1
kþ1Þ

e
�
kakCu þ ðm1 þ 1ÞkukCa

�
m�1

k :

(3) The lemma also admits the following generalization. If we put
P?þ ¼

P
ðpk n pk 0 Þd̂dðpkþk 0 Þ as in Remark 4.8, we have for any coe‰cient a of any g A D

and for any k; k 0 A N�:

k½an 1;P?þ�ðpk n pk 0 ÞkeCa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk 0�1

mkþk 0�1mk

r
;ð16Þ

where ðmkÞ is the sequence of quantum dimensions associated with g. Moreover
½an 1;P?þ�ðpan pbÞ can only be non-zero when a ¼ gg � � � gk and b ¼ gk � � � gkþk 00�1 n b 0

with k 00f 1—we have then k 0 ¼ k 00 þ jb 0j. Notice that in this case Ma ¼ mjaj and the sub-
object dH an b with maximal length is g � � � gkþk 00 n b 0, so that Mb=Md equals mk 00=mkþk 00 ,
which is less than mjbj=mjdj. We will use these facts in the proof of Theorem 8.3.

To prove (16), one considers like in the proof of the lemma intertwining projections
in Hg nHa nHb: the complete statement of Lemma 2.5 gives then the result with
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mk 00�1=mkþk 00�1. But this quotient is less than mk 0�1=mkþk 0�1, because the sequence
ðmk 0�1=mkþk 0�1Þk 0 is non-decreasing for every k: compare mk 0�1mkþk 0 and mkþk 0�1mk 0 by
considering the irreducible decompositions of Hk 0�1;kþk 0 and Hkþk 0�1;k 0 relative to the ap-
propriate AoðQÞ or AuðQÞ.

(4) Using the same starting point as in the proof of Lemma 7.1, we can prove
the following result: if a A SHSred is a coe‰cient of the corepresentation a A IrrC, and for
any b A IrrC, we have apbH H

P
fpdH j dH an bg. As a matter of fact one can write,

using the notation of the proof, pdapb ¼ pdE2ð~aan pbÞ ¼ E2d̂dðpdÞð~aan pbÞ. But ~aa lies in paH

by assumption, hence the considered product vanishes if dS an b. Similarly, one can
check that ðan 1Þp̂p4 d̂d

3ðpbÞK is included in the sum of the p̂p4 d̂d
3ðpdÞK with dH an bn a.

These ‘‘propagation properties’’ will in particular be used in relation with the fol-
lowing elementary fact: if H ¼

L
pH ¼

L
qH are orthogonal decompositions of H,

and if f A LðHÞ is an operator such that Card fq j pfq3 0geN for all p, one has
k f ke

ffiffiffiffiffi
N

p
supk fqk. r

Theorem 7.3. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree. Let us denote by jþ�ðaÞ the operator pþ�ðan 1Þpþ�, for any a A Sred.

(1) Let z A ðpk n p1ÞKþ� and a A SHSred. The sequence
�
Rjþ�ðaÞrnz

�
n

converges in

Ky to a vector which only depends on Rz and which we denote by pyðaÞðRzÞ.

(2) This defines a �-algebra morphism py : S ! LðKyÞ which extends by continuity

to Sred.

Proof. Let a be an element of SHSred. There exists an integer p such that a can
be expressed as a sum of coe‰cients of corepresentations b A IrrC with jbje p. We will use
in this proof the finite propagation properties of a, see Remark 7.2.4, with respect to two
decompositions of K . The first one is simply given by the projections ðpk n idÞ, but the
second one is a little bit more subtle. Using the notation of Remark 6.4.2, for k0 A N and
l A N� we denote by Qk0; l the sum of the projections Pb; gqk0þl pþ� with ðb; gÞ A I and
jbj ¼ k0. In other words, the ŜS-subspace ðpkþk0

n idÞQk0; lK is the sum over ðb; gÞHI,
jbj ¼ k0, of the irreducible subspaces bn a2l n bH ðpbnak

n pgk
ÞKþ�, where ak ¼ g � � � gk

as usual. In particular Qk0; l commutes to r and we have RQk0; l ¼ Qy
k0; l

R, if Qy
k0; l

is the sum
of the projections p̂pyðp

bna2lnb
Þ.

We first want to bound from above the norm of the commutator Ca ¼ ½jþ�ðaÞ; r� on
each subspace Qk0; lK . Because S n 1 commutes to Y, and using Proposition 4.3, we see
that the operator pþ�ðan 1Þp?�Ypþ� equals pþ�Ypþ?ðan 1Þpþ�. We subtract and add
this quantity from Ca and force the apparition of the commutators of Lemma 7.1:

Ca ¼ pþ�ðan 1Þpþ�Ypþ� � pþ�Ypþ�ðan 1Þpþ�

¼ �pþ�ðan 1Þp��Ypþ� þ pþ�Ypþþðan 1Þpþ�

¼ pþ�½an 1; pþ?�p��Ypþ� � pþ�Ypþþ½an 1; p?þ�pþ�:ð17Þ

Thanks to Remark 6.4.2, the norm of p��Ypþ� on ðpk n idÞQk0; lK is the same as the
one on ðpk�k0

n idÞQ0; lK , which is given by Lemma 6.3:
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kp��Ypþ�ðpk n idÞQk0; lk
2
e

MlMl�1

mk�k0þ1mk�k0

;ð18Þ

where ðmkÞk and ðMkÞk are the minimal and maximal sequences of quantum dimensions
from Remark 7.2.1. We proceed in the same way for the second term of (17), but this time
we have to consider the restriction of pþ�Ypþþ to the subspaces ðpk 0 n idÞQk 0

0
; l 0K that

meet the image of ðan 1Þðpk n idÞQk0; l . Remark 7.2.4 provides control over the set of in-
dices ðk 0; k 0

0; l
0Þ to be considered, and the fact that quantum dimensions are increasing with

the distance to the origin shows that the greatest value of the quantity (18) is obtained when
ðk 0; k 0

0; l 0Þ ¼ ðk � p; k0 þ p; l þ pÞ. Putting this together with the estimate of Lemma 7.1 we
get

kCaðpk n idÞQk0; lke 2
Ca

mk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MlþpMlþp�1

mk�k0�2pþ1mk�k0�2p

s
e

Ca;k0; l

m2
k

:

Notice that we have used the inequality mk�i fmkm�i
1 and introduced a new constant

Ca;k0; l to obtain the estimate order m�2
k .

Now we consider a vector z A ðpk n idÞQk0; lK , for fixed integers k0 and l. To
prove that the sequence

�
Rjþ�ðaÞrnz

�
converges, it is enough to study the series�P

Rjþ�ðaÞrnþ1z� Rjþ�ðaÞrnz
�
, which can be written as

�P
RCarnz

�
. Because the vector

Carnz ¼ ½jþ�ðaÞ; r�rnz belongs to the direct sum of the subspaces ðpkþnþiþ1 n idÞKþ� with
i A ½½�p; p��, we have

kRCarnzke ð2p þ 1ÞkCarnzke 2p þ 1

m2
kþn

Ca;k0; lkzk:

Now we have mkþn f k þ n þ 1, hence the series
	P

n

m�2
kþn



is convergent and the sequence�

Rjþ�ðaÞrnz
�

n
indeed converges in Ky. If Rz ¼ Rz 0 with z 0 A ðpk 0 n idÞKþ� and k 0f k,

we have z 0 ¼ rk 0�kz by injectivity of Rk 0 , hence the associated sequences are equal up to an
index shift.

We moreover get an estimate on the norm of kpyðaÞRQk0; lk: denoting by ðriÞi the
sequence of remainders of the series

�P
m�2

i

�
, we have

kpyðaÞðRzÞ � Rjþ�ðaÞzkeCa;k0; lð2p þ 1Þrkkzk;ð19Þ

hence kpyðaÞðRzÞke ð2p þ 1Þðkak þ Ca;k0; lrkÞkzk:

If we let k go to infinity without changing Rz, the norm of z converges to kRzk and we get
the upper bound kpyðaÞQy

k0; l
ke ð2p þ 1Þkak. We finally use Remark 7.2.4 to notice that

jþ�ðaÞQk0; lK is included in the sum of the ð2p þ 1Þ2 subspaces fQk0þi0; lþjK j i0 and
i0 þ j A ½½�p; p��g. As a result the same property of ‘‘finite propagation’’ is true for pyðaÞ in

the decomposition Ky ¼
L

Qy
k0; l

Ky and we obtain the inequality kpyðaÞke ð2p þ 1Þ2kak.

Let a; a 0 A SHSred and Rkz A Ky. By Remark 7.2.2, the norm���jþ�ðaÞjþ�ða 0Þ � jþ�ðaa 0Þ
�
rnz

�� tends to zero as n goes to infinity. By definition of py,
the norm

���pyðbÞR � Rjþ�ðbÞ
�
rnz

��, with b ¼ a; a 0 or aa 0, also tends to zero. As a result,
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we see that
���pyðaÞpyða 0Þ � pyðaa 0Þ

�
Rrnz

�� converges to zero with respect to n. But this
quantity does not depend on n, and hence we have proved that py is a morphism of
algebras.

In particular, it is enough to prove the identity pyða�Þ ¼ pyðaÞ� for the coe‰cients a

of any g A D. We have then jþ�ðaÞðpkþn n idÞK H ðpkþnþ1 n idÞK þ ðpkþn�1 n idÞK. Let
Rz;Rx A Ky, we can assume that z and x both lie in some ðpk n idÞKþ� and we write�

pyða�ÞRz jRx
�
¼ lim

�
Rjþ�ðaÞ

�
rnz jRx

�
¼ lim

�
jþ�ðaÞ

�
rnz j rnþ1x

�
þ lim

�
jþ�ðaÞ

�
rnz j rn�1x

�
¼ lim

�
rn�1z j jþ�ðaÞrnx

�
þ lim

�
rnþ1z j jþ�ðaÞrnx

�
¼ lim

�
Rz jRjþ�ðaÞrnx

�
¼

�
Rz j pyðaÞRx

�
:

Finally, let us notice that if the ‘‘propagation length’’ of a A S is p, the one of an is at
most np, so that kpyðaÞnke ð2np þ 1Þ2kakn for any n. In particular when kak < 1 in Sred

this proves that
�P

kpyðaÞnk
�

converges, so that the spectral radius of pyðaÞ is less than or
equal to 1. If a is moreover hermitian, so is pyðaÞ and we get kpyðaÞke 1. Hence
py : S ! LðKyÞ is continuous when S is equipped with the norm of Sred. r

Remark 7.4. In the case when Mg 3 2 for all g A D, the proof of the theorem can be
simplified. More precisely, it is enough to use in (17) the evident upper bound 1 for the
norms of p��Ypþ� and pþ�Ypþþ—and in particular there is no need to introduce the
projections Qk0; l anymore. As a matter of fact, the inequality kCaðpk n idÞke 2Cam�1

k is
su‰cient for the rest of the proof because the series

�P
m�1

k

�
is geometrically convergent in

this case. r

8. Applications

8.1. Property AO. In this section we will denote by l and r : S ! LðHÞ the left
and right regular representations of a Woronowicz C �-algebra ðS; dÞ, i.e. rðxÞ ¼ UlðxÞU .
They commute and therefore define a representation ðl; rÞ of Sred nmax Sred on H. Besides,
we will call ln r the natural representation of Sred nmax Sred on H nH, so that
ðln rÞðSred nmax SredÞ ¼ Sred nSred. Let p : LðHÞ ! LðHÞ=KðHÞ be the quotient map.
We say that ðS; dÞ has Property AO, after Akemann and Ostrand, if p � ðl; rÞ factorizes
through Sred nSred.

When the antipode of ðS; dÞ is involutive, it is easy to see that ðl; rÞ � d contains
the trivial representation e. Hence in this case ðl; rÞ factorizes through Sred nSred i f f ðS; dÞ
is amenable. Consequently, Property AO is only interesting for non-amenable Kac-C �-
algebras and can be seen as a restriction on their non-amenability.

Property AO was first introduced in [1] to study the non-nuclear C �-algebra
S ¼ C �ðF2Þ: it was used in this case to show that Sred nmax Sred=Sred nSred FKðHÞ.
This result was generalized to reduced C �-algebras of ICC discrete groups in [15], where
Property AO was also used in conjunction with Property T of Kazhdan to produce non-K-
nuclear C �-algebras. More recently, Property AO was used in [12] in conjunction with local
reflexivity to produce solid factors.
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The aim of this section is to prove Property AO for the free quantum groups ðS; dÞ
studied in this article. We will use the original method of [1]: the factorization of p � ðl; rÞ
arises from an isometry F : H ! H nH such that F �ðln rÞðxÞF 1 ðl; rÞðxÞ mod KðHÞ,
for any x A Sred nmax Sred. In the case of F2, the isometry F is the polar part of the closable
operator which maps each characteristic function 1a A H to the sum of the 1b1

n 1b2
with

b1b2 ¼ a and jb1j þ jb2j ¼ jaj. In particular, the adjoint of this operator coincides on
HnH with the natural extension E2P?þ of E2 p?þ. In the quantum case, we also define F

from this extension.

Definition 8.1. Let S be a Woronowicz C �-algebra and p1 a central projection of
ŜS such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ
is a directional tree. Let E2 : HnH ! H be the operator induced in the GNS construc-
tion by the multiplication of S, and P?þ ¼

P
ANd̂dðpkþk 0 Þðpk n pk 0 Þ. We define the closed

operator F0 by F �
0 ¼ E2P?þ and we denote by F its polar part.

Lemma 8.2. We use the hypotheses and notation of Definition 8.1. We suppose that

Mg 3 2 for all g A D. For every k A N� we have then kF0 pkk2
f k þ 1, and there exists a

constant C > 0 such that

Ea; a 0 A IrrC a 0 HDn a ) jkF0 pa 0k2 � kF0 pak2jeC:

Proof. We know from Proposition 4.7 and Remark 4.8 that F0 is a multiple of an
isometry on each subspace paH, the corresponding norm being given by

kF0 pak2 ¼
P Mb1

Mb2

Ma

����aH b1 n b2; jb1j þ jb2j ¼ jaj
� 


:ð20Þ

Each term of the sum is clearly greater than or equal to 1, and there are jaj þ 1 terms in the
sum: one obtains the admissible pairs ðb1; b2Þ by following the geodesic from 1C to a until
an arbitrary point b1, and then using the remaining sequence of directions to go up from 1C

to b2. Recall from Lemma 4.4 that the conditions for a sequence of directions to define an
ascending path are only local.

To get the second estimate, let us consider an inclusion a 0H gn a with g A D. By
exchanging a and a 0 if necessary, one can assume that ja 0j > jaj. As a first step, we will
assume that a ¼ gg � � � gi and a 0 ¼ ggg � � � gi. We can moreover suppose then that if 2, and
hence dim g > 1. Let ðmkÞ be the sequence of quantum dimensions associated to g, by
hypothesis we have mk @ akþ1=ða � a�1Þ for some a > 1. We write then

fi :¼ kF0 pak2 ¼
P

kþk 0¼i

mkmk 0

mi

¼ ai

mi

P
kþk 0¼i

mk

ak

mk 0

ak 0 ;

and similarly kF0 pa 0k2 ¼ fiþ1. But by a variant of Cesaro’s Lemma fi is equivalent to
aði þ 1Þ=ða � a�1Þ, and in particular ð fiþ1 � fiÞi is bounded. We take C to be a common
bound for these sequences when g varies in D.
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We address now the general case and express a as a tensor product gg � � � gi n ~aa,
where ~aa does not start with g, and possibly i ¼ 0 or ~aa ¼ 1C. We have then Ma ¼ miM~aa

and Ma 0 ¼ miþ1M~aa. Let us first consider the terms in (20) where jb1j > i. One has then
Mb1

¼ miM ~bb1
for some ~bb1, hence Mb1

Mb2
=Ma ¼ M ~bb1

Mb2
=M~aa. If we consider similarly in

the expression (20) for kF0 pa 0k2 the terms where jb1j > i þ 1, we see that Mb1
¼ miþ1M ~bb1

and Mb1
Mb2

=Ma 0 ¼ M ~bb1
Mb2

=M~aa. Hence all these terms can be simplified from the dif-

ference kF0 pa 0k2 � kF0 pak2. We proceed symmetrically with the terms of (20) where
jb1je i (resp. i þ 1): this time b2 can be expressed as an irreducible tensor product ~bb2 n ~aa,
the factors M~aa disappear from the quotient Mb1

Mb2
=Ma (resp. Ma 0) and one recognizes fi

(resp. fiþ1). As a result we have kF0 pa 0k2 � kF0 pak2 ¼ fiþ1 � fi and the first step gives the
desired upper bound. r

Theorem 8.3. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS

such that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a

directional tree and that Mg3 2 for all g A D. Let F : H ! H nH be the isometry of Def-

inition 8.1. Then

F �ðln rÞðxÞF 1 ðl; rÞðxÞ mod KðHÞ;

for any x A Sred nmax Sred. In particular ðS; dÞ has Property AO.

Proof. By symmetry one can assume that x ¼ an 1 with a A Sred a coe‰cient of

some g A D. We put G ¼ ðF �
0 F0Þ�

1
2, so that F ¼ F0G. We have then

aF � � F �ðan 1Þ ¼ G½G�1; a�F � þ GE2½P?þ; an 1�:

By the first statement of Lemma 8.2, the operator G is compact. Hence it su‰ces to prove
that ½G�1; a� and E2½P?þ; an 1� are bounded.

For the first commutator, we remark that apa ¼ ðpa 0 þ pa 00 Þapa if gn a ¼ a 0 l a 00.
Moreover we have Gpa ¼ kF0 pak�1

pa, so that

½G�1; a�pa ¼ ðkF0 pa 0k � kF0 pakÞpa 0apa þ ðkF0 pa 00k � kF0 pakÞpa 00apa:

Hence the result follows from the second statement of Lemma 8.2, after factoring out
kF0 pa 0k þ kF0 pak from it. (In fact this even proves that ½G�1; a� is compact.)

For the second commutator, we will assume that dim g > 1: otherwise the proof is as
easy as in the classical case. Denote by ðmkÞk the sequence of quantum dimensions asso-
ciated with g. We use the Remarks 4.8 and 7.2.3 to write

kpaE2½P?þ; an 1�k2

e
P

kpaE2ðpb1
n pb2

Þk2 � k½P?þ; a
� n 1�ðpb1

n pb2
Þk2

eCa

Pmjb1jmjb2j
mjaj

mjb2j�1

mjaj�1mjb1j
¼ Ca

mjajmjaj�1

Pjaj
k¼0

mkmk�1:

The last upper estimate is bounded because mk @
akþ1

a � a�1
for some a > 1. r
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Remark 8.4. Recall that AuðQÞ is never amenable and that AoðQÞ is amenable i f f
n ¼ 2 [5]. Hence the only case, up to free products, where Property AO is neither trivial nor
proved by Theorem 8.3, is the one of AuðI2Þ. Property AO may however be fulfilled in this
case, too. r

8.2. KK-theory. The notion of K-amenability was first introduced by Cuntz [7] for
discrete groups: the aim was to give a simpler proof to a result of Pimsner and Voiculescu
[13] calculating the K-theory of the reduced C �-algebras of free groups. Cuntz proves that
the K-theory of the reduced and full C �-algebras of a free group are the same, and gives in
[6] a simple way to compute it in the full case.

Julg and Valette extended then the notion of K-amenability to the locally compact
case and established the K-amenability of locally compact groups acting on trees with
amenable stabilizers [8]. This includes the case of the free groups acting on their Cayley
graphs. To prove the K-amenability of a locally compact group G, one has to construct an
element a A KKGðC;CÞ using representations of G that are weakly contained in the regular
one, and then to prove that a is homotopic to the unit element of KKGðC;CÞ. In [8], both of
the steps are carried out in a very geometric way. Moreover, it turns out that a can be in-
terpreted as the g element used to prove the Baum-Connes conjecture in this context [9].

We refer the reader to [2], [17] for details about equivariant KK-theory with respect to
Hopf C �-algebras, and we just recall the equivalent characterizations of K-amenability for
a discrete quantum group defined by its full and reduced Woronowicz C �-algebras S, Sred:

(i) 1 A KKŜSðC;CÞ can be represented by a triple ðE; p;FÞ such that the representation
of S on E factors through Sred.

(ii) For every C �-algebra A endowed with a coaction of ŜS,
½lA� A KKðAzS;Azred SÞ is invertible.

(iii) ½l� A KKðS;SredÞ is invertible.

(iv) There exists a A KKðSred;CÞ such that l�ðaÞ ¼ ½e� A KKðS;CÞ.

In this subsection we explain how to construct an element a A KKðSred;CÞ from the
quantum Cayley graph of a free quantum group. It is the natural quantum generalization
of the Julg-Valette element mentioned above. It has index 1, however further work is
needed to determine whether l�ðaÞ ¼ ½e�.

Theorem 8.5. Let S be a Woronowicz C �-algebra and p1 a central projection of ŜS such

that Up1U ¼ p1 and p0 p1 ¼ 0. Assume that the classical Cayley graph G of ðS; p1Þ is a di-

rectional tree and that Mg 3 2 for all g A D. Then E2 pþþ : Kg ! H and E2ðRsÞ� : Ky ! H

commute to the actions of Sred modulo compact operators. In particular E2

�
pþþ þ ðRsÞ�

�
defines an element a A KKðSred;CÞ of index 1.

Proof. In this proof we will denote by pfk0
the sum of the projections pk with

k f k0. We have E2 pþþ ¼ E2 p?þ and the target operator E2 intertwines the actions of Sred,
hence it is enough to prove that p?þ commutes to Sred n 1 up to compact operators. If
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a A Sred is a coe‰cient of some g A D, this results directly from Lemma 7.1: because ðm�1
k Þ

is decreasing and pk 0apk vanishes as soon as jk � k 0j3 1, we have

k½ p?þ; an 1�ðpk n idÞkeCam�1
k ) k½ p?þ; an 1�ðpfk0

n idÞke 2Cam�1
k0
:

This proves that ½ p?þ; an 1� is compact, and the general result follows because the co-
e‰cients a of the corepresentations g A D span the C �-algebra Sred.

For the case of ðRsÞ� we will use the proof of Theorem 7.3. Thanks to the hypothesis
we can take into account the simplification of Remark 7.4: we avoid the use of the projec-
tions Qk0; l by taking for rk the remainder of

�P
m�1

k

�
instead of

�P
m�2

k

�
. Equation (19)

reads then ���pyðaÞR � Rpþ�ðan 1Þ
�
ðpk n idÞ

��e ð2p þ 1ÞCark:

We notice also that rk is again equivalent to a multiple of m�1
k because ðmkÞ grows geo-

metrically. To conclude we use Lemma 7.1 and the fact that ðan 1Þ commutes to Y: up to
a change of the constant Ca, we obtain

���pyðaÞRs � Rsðan 1Þ
�
ðpk n idÞ

��eCam�1
k .

Summing over k f k0 we obtain an inequality showing that
�
pyðaÞRs � Rsðan 1Þ

�
is

compact: ���pyðaÞRs � Rsðan 1Þ
�
ðpfk0

n idÞ
��eCark0

:

Finally E2

�
pþþ þ ðRsÞ�

�
defines an element a A KKðSred;CÞ of index 1 because

E2 : Kþþ ! ð1 � p0ÞH is invertible by Proposition 4.7, as well as

pþþ þ ðRsÞ� : Kg lKy ! Kþþ

by Theorem 5.3, Proposition 6.2 and Theorem 6.5. r
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