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Orientation of quantum Cayley trees
and applications

By Roland Vergnioux at Miinster

Abstract. We introduce the quantum Cayley graphs associated to quantum discrete
groups and study them in the case of trees. We focus in particular on the notion of quan-
tum ascending orientation and describe the associated space of edges at infinity, which is an
outcome of the non-involutivity of the edge-reversing operator and vanishes in the classical
case. We end with applications to Property AO and K-theory.

0. Introduction

The original motivation of this paper is Cuntz’ result on the K-amenability of free
groups [7], and the geometric proof of this result given by the more general paper of Julg
and Valette [8] on groups acting on trees with amenable stabilizers. Natural quantum ana-
logues of the free groups are the free quantum groups defined by Wang and van Daele [16]
and studied by Banica [5]. Moreover, equivariant KK-theory can be generalized to the case
of coactions of Hopf C*-algebras [2], and the notion of K-amenability carries over to this
quantum framework without difficulty [17]. It is therefore natural to ask whether free
quantum groups are K-amenable.

To apply the method of Julg and Valette in this framework, one needs a quantum
geometric object to play the role of the tree acted upon by the quantum group under con-
sideration. In the case of amalgamated free products of amenable discrete quantum groups,
the construction of a quantum analogue of the Bass-Serre tree was achieved in [18] and
could be used to prove the K-amenability of these amalgamated free products. In the case
of the free quantum groups, the needed objects should be generalizations of the Cayley
graphs of the free groups. The main goal of this paper is to define a notion of Cayley graph
for discrete quantum groups, and to study its geometric properties in the case of the free
quantum groups.

We will give in the last section applications of this study: a proof of the property of
Akemann and Ostrand and the construction of a KK-theoretic element y for free quantum
groups. To prove that these quantum groups are K-amenable, it remains to prove that
y = 1. We refer the reader to the last section for more historical remarks and references
about Property AO and K-amenability.
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The paper is organized as follows:

1. In the first section, we recall some notation and formulae concerning discrete
quantum groups and classical graphs.

2. The second section is a technical one about fusion morphisms of free quantum
groups, and its results are only used in the proofs of Sections 6 and 7. The reader will
probably like to skip over this section at first.

3. In the third section, we give the definition of the Cayley graphs of discrete quan-
tum groups and state some basic results about them.

4. We then restrict ourselves to the case of Cayley trees. We introduce and charac-
terize this notion in the fourth section, where we also study the natural ascending orienta-
tion of such a tree.

5. In the fifth section, we study more precisely the space of geometric edges of a
quantum Cayley tree and we find that the projection of ascending edges onto geometric
ones is not necessarily injective.

6. We show more precisely in the sixth section that the obstruction to this injectivity
is the existence of a natural space of (geometric) edges at infinity, which vanishes in the
classical case.

7. In the seventh section, we equip this space with a natural representation of the free
quantum group under consideration, thus turning it into an interesting geometric object on
its own.

8. Finally the last section deals with applications, as explained above.
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1. Notation

The general framework of this paper will be the theory of compact quantum groups
due to Woronowicz [22]. In fact we will use it, from the dual point of view, as a theory of
discrete quantum groups. Let us fix the notation for the rest of the paper. The starting ob-
ject is a unital Hopf C*-algebra (S,0) such that 6(S)(1 ® S) and o(S)(S ® 1) are dense in
S ® S. Such a Hopf C*-algebra will be called a Woronowicz C*-algebra. One of the key
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results of the theory is the existence of a unique Haar state z on (5,0) [20]. We will put
6% = (id ® 6)0 = (0 ® id)d and similarly §° = (id ® id ® 5)5>.

We denote by % the category of corepresentations of (S,0) on finite-dimensional
Hilbert spaces, by Irr % a set of representatives of irreducible corepresentations modulo
equivalence, and by 1¢ = id¢ ® 1g the trivial corepresentation. We will denote by H,, and
vy € B(H,) ® S the Hilbert space and the corepresentation associated to an object o € €.
The category % is equipped with direct sum, tensor product and conjugation operations: for
the first and the second ones we refer to [20], and we give now some precisions about the
third one which is slightly more involved.

Let (¢;) be an orthonormal basis of H,. The conjugate object & of o € ¥ is charac-
terized, up to isomorphism, by the existence of a conjugation map j, : H, — Hy, { — (
which is an anti-isomorphism such that 7, : 1 — > e; ® ¢; and ¢, : {® & ({|&) are resp.
elements of Mor(1, o ® &) and Mor(d ® o, 1). We put F, = jj, and we say that j, is nor-
malized if Tr F, = Tr F, ', This positive number, which is also equal to ||z,(1)]|?, does not
depend on the normalized map j,. It is called the quantum dimension of « and is denoted
by M,. When « is in Irr ¢, we can assume that & is in Irr %, and the possible conjugation
maps j, only differ by a scalar. We have then & = o, and if o« & & one can choose nor-
malized conjugation maps j,, j; such that j;j, = 1. If & = & one has j? = +1 for every
normalized j,.

The coefficients of the corepresentations v, span a dense subspace . — S which turns
out to be a Hopf =-algebra. We denote by m its multiplication, and by ¢: % — C and
K% — & its co-unit and its antipode. Notice that x is not involutive in general. In this
regard, an important role is played by a family (f.). . of multiplicative linear forms on .7,
which are also related to the non-triviality of the modular properties of . We will need in
this paper the following formulae in the Hopf *-algebra .%:

(1) Vxe¥ (1d®e)od(x) =(e®id)od(x) = x,
(2) Vxe¥ mo(id®k)od(x) =mo (k®id) 0od(x) =e(x)1.

Let A,:S— H be the GNS construction of the Haar state /4, denote by
/S — B(H) the corresponding GNS representation and by Syq its image. The Kac
system of the compact quantum group (S,d) is given by the following formulae, where
f*x:=(1d ® f)d(x) is the convolution product of f € ¥* and x € ¥

(3) V(A ®@A(x® y) = (Ar ® Ap)(0(0)1 ® ),
(4) U: Ap(x) — Ah(fl *K(X)).

Let us recall the following notation and formulae from the general theory of
multiplicative unitaries [3]. The unitary V € B(H ® H) is multiplicative, meaning
that ViaVi3Va3 = Va3 Via, and for any we B(H), one puts L(w)= (o ®id)(V)
and p(w) = (Id®w)(V). On the other hand, U is an involutive unitary on H
such that V=X(1® U)V(1® U)X and V=X(U® 1)V(U® 1)T are again multi-
plicative unitaries. Moreover the irreducibility property holds: (2(1 ® U) V)3 =1 or,
equivalently, VVV = (U® 1)X. Here X denotes the flip operator, and we use the leg
numbering notation.
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The reduced C*-algebra Syeq coincides with the closure of L(B(H),) in B(H), and we
similarly denote by S the closure of p(B(H), ). Both can be made Hopf C*-algebras by the
following formulae:

(5) Ored(8) = V(s@ VDV = V(1 ®s)V,
(6) S =V 1V=rEer:

Notice that the reduction homomorphism 4 :S — Spq induces then an isomorphism
between the dense Hopf *-algebras of both Woronowicz C*-algebras. Besides, the unitary
V lies in M(S® Sred) and we have the following commutation relations inside B(H):
[Sted, USreaU] = [S, USU] = 0. There is also a full version of S [3] and we will say that S is
a full Woronowicz C*-algebra when it coincides with its full version.

Finally, the structure of the dual C*-algebra S is very easy to describe: it is iso-
morphic to the direct sum over o € Irr @ of the matrix C*-algebras B(H,). We will denote
by p, € B(H) the corresponding minimal central projections of S, except the one associated
to the trivial corepresentation 14 which will be denoted by py.

Let us recall some facts about free quantum groups. The definition was given in [19],
[16]: let n = 2 be an integer, and Q an invertible matrix in M,(C), the C*-algebra 4,(Q) is
then the universal unital C*-algebra generated by n? elements u; ; and the relations that
make U = (u;;) and QUQ™"' = Q(u;;)Q~" € M, (A4,(Q)) unitary. The C*-algebra 4,(Q)
is defined similarly with the relations making U unitary and QUQ~! equal to U. We will
write S = 4,(Q) or 4,(Q) when there is no need to distinguish the unitary and orthogonal
versions. It is easy to see that S carries a unique Woronowicz C*-algebra structure (S,0)

for which U is a corepresentation.

The corepresentation theory of A4,(Q) was fully described in [5] in the following way.
The set of representatives Irr 4 can be identified with the free monoid on two generators
u and # in such a way that the corepresentation associated to u is equivalent to U and the
following recursive rules hold:

ou @ o = ot o @ o, ot @ uo = aiiue’ D o @ o,

o @ uo' = oo, ot @ el = odgie’, o = ud, ol = ud.

The corepresentation theory of 4,(Q) is even simpler. We assume in this case that QQ is a
scalar matrix, otherwise the fundamental corepresentation U is not irreducible. The set
Irr % can then be identified with N in such a way that the corepresentation associated to o
is equivalent to U and the fusion and conjugation rules read as in the representation theory
of SU(2):

O @ o = g D@ U142 D - -+ D -2 D Oty e = k-

Let us finally fix some terminology concerning classical graphs. Following [14], a
graph g will be given by a set of vertices v, a set of edges ¢, an endpoints mape: ¢ — 0 X D
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and a reversing map 6 : ¢ — ¢ which should be an involution such that e o § = g o e. In this
paper we denote by o the flip map for spaces and C*-algebras. If e is injective, the graph
g = (v, ¢,e,0) is isomorphic to the graph (n, e(e), ican, a), which we will call the simplicial
realization of g—although it only comes from a simplicial complex when it has no loops,
i.e. when e(¢) doesn’t meet the diagonal.

The set of geometric, or non-oriented, edges of g is the quotient ¢, of e by the relation
a ~ 0O(a). An orientation of the graph is a subset ¢, < e such that e is the disjoint union of
¢, and O(e). The quotient map evidently induces a bijection between any orientation and
the set of geometric edges. When g is a tree endowed with an origin o, we denote by | - | the
distance to o and the ascending orientation of g is the set of edges a such that e(a) = («, f)
with |f] > |of.

Let A be a finite subset of a discrete group I' such that 1¢ A and A~' = A. The
directional picture of the Cayley graph associated to (I',A) is given by v =T, e =T X A,
e(o,y) = (o, p) and O(at, y) = (o, y"). Its simplicial realization will be called the simplicial
picture of the Cayley graph.

2. Complements on fusion morphisms

In [4], [5] a full description of the involutive semi-ring structure of the core-
presentation theory of 4,(Q) and 4,(Q) was given by means of the fusion and conjuga-
tion rules on the set of irreducible objects up to equivalence. In this section we choose
concrete representatives for the irreducible objects and compute explicitly isometric mor-
phisms realizing the ““basic” fusion rules. This section is a technical one and its results are
only used in Sections 6 and 7: we advise the reader interested in quantum Cayley graphs to
skip to the next section.

In the case of 4,(Q), with Q € GL,,(C) and n = 2, let us choose y = u or #, and put
Y21 =7, Va1 = 7. We will mainly be interested in the corepresentations oy = yyy-- -y, (k
terms) and o =P Y @ Yoy - Vrawr- As a matter of fact, the fusion rules of 4,(Q)
reduce to the relations oy /41 = okrk+2 @ ok kv and trivial tensor products. In the or-
thogonal case, we will also put y, = y = oy for every k € N and oy, = o ® oy, to simplify
the exposition.

Let us now choose concrete corepresentation spaces Hy and H, for the classes oy, d.
We first take Ho = C, equipped with the corepresentation 1¢ ® 1g, and H, = H; = C",
equipped with the corepresentations U or U. For any k € N* we denote by H7®k the
tensor product corepresentation H, ® H; ® --- ® H,,, and we define H to be its unique
sub-corepresentation equivalent to o;. We proceed in the same way inside H,,®k and
Hy®k ® H_(?k/ to get corepresentation spaces H; and Hj i representing & and oc;;kk/. We
will denote by #, 7 and #; the morphisms associated to normalized conjugation maps of
ok, % and 0 € {y,7} respectively—we can and will assume in this section that j;j, = +1,
and we denote by F1 the opposite sign. We put my = M,, = Mj, and we call (my), the
sequence of quantum dimensions of the quantum group. Let us gather simple facts about
them in the following lemma:
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Lemma 2.1. (1) Denote by T; : H/@k — @@k” the morphism id® ® b, ® id®k!

k
We have then Hy» = () Ker T}" = H,/®k+2.
=0

(2) We have (id @ 12)(15 ® id) = Lidp, and 15t; = miidc for d € {,7}.

(3) For any k € N we have my = dim Hy, with equality iff Fy is the identity. More-
over the equality my = 2 happens only in the three cases

0 1 0 1 1 0
(5 g) Al ) o afy )

(4) Put m_; = 0. The sequence of quantum dimensions satisfies the induction equations
mimy = my,1 + my_1 for k € N. Moreover my = 1 and my is the geometric mean of Tr Q*Q

and Tr(Q* Q).

Proof.  The equality of Point (1) is true when k = 2 because H, ® Hj is the ortho-
gonal direct sum of #,(C) and a subspace equivalent to a», and the general result follows by
induction because Hyj = H; ; N Hy 1. The proof of Point (2) is an easy calculation. For
Point (3), denote by a (resp. /4) the arithmetic (resp. harmonic) mean of the eigenvalues of
F}: the normalization condition of j; shows that a = 4~ so that

up to isomorphism.

mj = adimHk = \/a/hdimHk z dimHk.

For the equality case m; = 2, see [5]. The induction equation of Point (4) relies on the fu-
sion rule o ® o = o1 @ a1 which implies that X(jx ® ji) and jx—; @ jx+1 are normal-
ized conjugation maps for the same corepresentation [21]. Finally, the formula for m; holds
because the matrix Q defines in the canonical base of C" a (non-normalized) conjugation
map for H, by definition of 4,(Q) [5]. O

We want now to give the explicit expression of an isometric morphism from H,, , to
Hy. 1 pry1, for any p, p’ € N. Note that there is an evident morphism .7 : H, ,» — Hj 41 141
given by the formula

g = <7ZP+1 ® 7Zpr+1) o (lde ® [7/1+1 ® idH[)r),

where 7, denotes the orthogonal projection of H;@k onto Hy.. However 7 is not isometric,
and its definition does not allow to compute easily the image of a vector x e H), ,. In
Proposition 2.2 we give an explicit and simple expression of .7, which allows us to compute
its polar decomposition in Proposition 2.3. From this we finally deduce Lemmas 2.4 and
2.5 which will be used in the proofs of Lemmas 6.3 and 7.1 respectively.

We use more precisely the following ““basic morphisms™ from Hy®1’+l’/ to H},®1’+1”+2,
indexed by / € [0, p] and /' € [0, p']:

. 1 . 41 : —1 @I+ : —r
Ty = (id®P* @t;‘M@)ld@’* Jo ((d* ' ®1, ., ®id®" @1, . @id®).

IfA=(ap)isa(p+1)x(p +1)matrix, we will write T4y = > a; T} ;. Besides, we have
by Lemma 2.1 a simpler expression of 7; ;» when / or I’ equals zero:
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Tio=+id®" "' @1,  @id®*),

/p—I+1

. 1/ . /_1/
Toy =+(d®"" @1, ., @id® ™).

Proposition 2.2. (1) There is at most one matrix A, up to a scalar factor, such that T
restricts to a non-zero morphism from H), ,» to H, 1 1. If this is the case, one can assume
that ag.o = 1 and one has then Ty = 7.

(2) The following matrix A satisfies the conditions of Point (1):

arp = (F 1) eyl
MyNy;

Proof. (1) It is not hard to check that the family (77 ) is free, even when restricted
to H), ,». Hence it suffices to prove that an admissible 74 is necessarily a multiple of 7. First
of all, Point (1) of Lemma 2.1 shows that we have (y|7},(x)) = 0 for any y € Hyy1 pr+1
and (/,1") # (0,0). Hence if T4(x) € Hy;1,p'+1 We obtain

(7) I Ta(x) 1> = a0,0(Tu(x) | To.o(x)) = a0.0(Tu(x) | 7 (x)).

In particular ay o must be non-zero, and therefore we can assume that it equals 1. To con-
clude we observe that the irreducible subspaces of H, , (resp. H,1 ,/+1) are pairwise in-
equivalent, so that the morphisms 7, and  must be proportional on each irreducible
subspace of H, ,/, and (7) finally shows that the corresponding proportionality coefficients
all equal 1.

(2) We will express the condition that T4(x) should be in Hy,y - for any x € H, ,/
using Point (1) of Lemma 2.1: for any ke€[l,p] and k'€ [l,p’] we should have
T o Ta(x) = T 1 Ta(x) = 0. We therefore compute, for / € [0, p] and /" € [0, p']:

iT;,OTl,I'(x) = (id®17*k ® P ® id@k*l ® f;; ® id®pl+l)

yp—/c+1

: 1®@p—1 s QI+ :1®p' =1’
© (ld ® t?p—lﬂ ® ld ® t}’[)+l/+l ® ld )(X)

0 fkZl—-2o0rk=>1+2,
= *T  Tor(x) ifk=I1-Torl+1,
mlTl*’OToJ/(x) if k=1 (see Lemma 2.1).

As a result, we get the following sufficient conditions on 4:
Vie[l,p], I"e[0,p'] miaky £ (a1 + ar1,r) =0,

if one agrees to put a,.1, = 0. We recognize the induction equations satisfied by the
sequence (mMy—i)o<;<,1» Up to a sign change. Therefore these conditions mean that
the columns of A should be proportional to ((F1)”my,...,Fmy,1). Symmetrically
the conditions 7, T4(x) =0 are equivalent to the lines of A being proportional to
((11)” My, ..., Fmy, 1). The matrix of the statement satisfies these conditions, hence the
associated morphism T4 maps H), ,» to Hpiq pry1. [
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Proposition 2.3. Let g € [0, min(p, p')] and denote by G < H,, , the subspace equi-
valent to oy _s4. One has then

2 _ Mp iy — Mp—giMp—g—1
ity

1761l

Proof- Let z € G be a unit vector. Because G is irreducible and .7 is a morphism, it
is enough to compute the number Np'fp, = ||7°(2)||*. Of course we will use the expression
7 = T4 of Proposition 2.2. We start from the formula (7) and notice that 77 ,(z) is or-
thogonal to Ty 0(z) € H, ® H; ® H, ® Hp whenever / = 1 or I’ = 1. Hence

IT4()IP = (Tu(2) | Too(2)) = X anv(T10(2)| Too(2)).

1,1'=0,1

When / or [’ equals zero, we can use the formulae for 7}, 7o 0(z) obtained in the proof
of Proposition 2.2. The term / =/'=1 will be a recursive one. Let us denote by T/,
and 7' = (n, ® n,7) o T}, the morphisms analogous to Ty and 7 for the inclusion
H, 1 -1 — H, ,. We remark that

TooTi1 = J_rT(;jO(id@’—l R, @, ® id®”"1)Téj‘0 = T5.0To;

so that (T711(2)| To0(2)) = || T5(2)I> = [|7"*(2)]]>. Putting all together, we get the
relation '

¢ _ mp—1 Ny Mp_1Mp'—1 5. g1
Nppr = = - + p—1.p'~1
myp my mpmy:
q _ g-1
& m,,r(m[,]\/p’p, —Mpy1) = mp/,l(mp,lepr,fl —my,).

Hence the left-hand side quantity is invariant under simultaneous shifts of the three indices
p, p' and ¢. Note that the above relation is still valid when ¢ = 0 if one puts N}, = 0 for
any k and k': as a matter of fact, in this case z lies in H,, and in particular 7 *(z) = 0.
One can therefore shift ¢ + 1 times the indices and obtain the desired identity:

q _
my (MmN —my 1) = —my g 1my—g. O

Lemma 24. Let Hy 11k CHy®k*1 ®H, ®H§k be the tensor product of the

respective subspaces equivalent to oy_1,7; and a, with k € N*. Let t € Mor(Hy_2, Hi_1.1)
be an injection and denote by

k

— G the subspace of (t ® id)(H—_2,x)  Hi_1,1,x equivalent to oy,

— Gy the subspace of Hi_1 j4+1 < Hi—1,1 k equivalent to ay.

Then the norm of the orthogonal projection from Gy onto G, equals |1 —

Proof. Let A= (a;y) and J = T, be the matrix and the morphism of Proposition
2.2 in the case (p, p') = (k — 2,k). We denote by A" = (a; ;) the matrix given by a; , = a9
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and a] , = 0if / = 1, and we remark that we have then 7 = (7' ®id), where 7' is the
morphism of Proposition 2.2 for (p, p’) = (k — 2,0). Hence if x € H®?*~2 is a vector in the
subspace of Hj_»  equivalent to oy, we have T/ (x) € G; and T4(x) € G,. The orthogonal
projection of G onto G, being a morphism, it is a multiple of an isometry, so that its norm
equals

(L@ IT)| . ImIP 7w
1T O]~ 1Te@INZ 17 @id )]

because the terms 77 ;/(x) with // =1 are orthogonal to 7,(x). We finally compute the
value of the last quotient thanks to Proposition 2.3, with (p, p’,q) = (k — 2,k,k — 1 —1)
and (p,p’,q) = (k—2,0,0):

17 (x)|? _ P — Ay Py i

1 :
(7' ®id)(x)|? Moy My nymy

Lemma 2.5. Let Hy ) < H,® Hi®k ® Hy%k/ be the tensor product of the respective

subspaces equivalent to y, 7y - - -7, (k terms) and y;y, iy -+ - Vppp—1 (k' terms), with k, k" € N*.
Let t e Mor(Hy._1, Hy ® Hy) be an injection and denote by

— G the subspace of (t ® id)(Hy_1,x) < Hi ki equivalent to oy r_1,

— Gy the subspace of Hy i < Hi ki equivalent to oy jr—1.

My
Then the norm of the orthogonal projection from Gy to G, equals , |1 — L
Mjetk'—1 1k

Proof. Like in the previous proof we will wuse the morphisms
T Hojsk—1 — Hy ko and 7' Hy -1 — H; studied in Proposition 2.2. We notice
that Gy (resp. G) is the image of Hy 41 by (7' ®id) (resp. 7), so that the norm of the
projection we are interested in is given by

(T (T @id) )| 7

17T @id) )| (7" ®@id)(x)|I”
for the same reason as above. Proposition 2.3 with (p,p’,q) = (0,k+ k" —1,0) and
(0,k —1,0) gives then

||,7(x)||2 (mumyego 1 — My )My My oy

(7' @id)(x)|>  Mukr—1(mum_y —my_2) Mgy

The result follows then from the identity my. i 1M = My omy_1 + my 1, which is easy to
prove by induction, or by noticing that the irreducible subobjects of Hj'—1 i are the same
as for Hy ' -1, up to the one equivalent to Hy—;. [J

3. Quantum Cayley graphs

In this section we introduce the notion of Cayley graph for discrete quantum groups.
In fact the classical notion can be generalized into two different directions, coming from the
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two different pictures introduced in Section 1. The quantum generalization of the simplicial
picture is still a classical graph. On the contrary, the />-spaces of the directional picture
give rise in the quantum case to a quantum object, in the spirit of non-commutative
geometry.

In the following definition, we use freely the notation of Section 1. In particular, S
and S are the dual Hopf C*-algebras of a compact quantum group—S being unital—, H is
the GNS space of the Haar state of S, p, is the minimal central projection of S corre-
sponding to an irreducible corepresentation « € Irr € and py = p,.

Definition 3.1. Let S be a Woronowicz C*-algebra and p; a central projection of S
such that Up; U = p; and pop; = 0.

(1) The classical Cayley graph g associated with (S, p1) is given in simplicial form by
p=1Irr% and ¢ = {(¢,&') € 0*|6(ps)(p ® p1) * 0}.

(2) The hilbertian quantum Cayley graph associated with (S, p;) is the 4-uplet
(H,K,E,©)where K =HQ® piH, E=Vge B(K,H® H)and ® = V(1 ® U) ¢ € B(K).

Let us introduce some more objects associated with this quantum graph. We denote
by ¢ the linear form on p;H defined by e(Ax(x)) = Ay (e(x)).

(3) The source and target operators of the hilbertian quantum Cayley graph are
E=(id®e¢)and E; = E; 0® € B(K,H).

(4) The quantum /2-space of geometric edges is K, = Ker(® + id).

Remarks 3.2. (1) The central projections p; that match the hypotheses of Definition
3.1 are sums of projections p, over finite subsets & < Irr % such that ¥ = & and 14 ¢ 2.
The elements of ¢ are then the ordered pairs of vertices («, ') for which there exist y € &
such that o’ = o ® y. Note that this set of edges is symmetric, thanks to the equivalence
o ca®y<eaca ®7 (Jacobi duality). In this paper, the classical Cayley graph will
mainly be used as a tool for the study of the quantum one.

(2) The hilbertian quantum Cayley graph will be more useful for our purposes be-
cause he naturally carries representations of the discrete quantum group under consider-
ation: the C*-algebra S acts on H via the GNS representation, and we let it act trivially on
p1H. Moreover the operators ®, E; and E, commute to these representations, and in par-
ticular K, is also endowed with a natural representation of S. The commutation properties
to the action of S will be examined in Proposition 3.7.

(3) The identity V¥V = (U ® 1)X provides us with another expression for the re-
versing operator: @ = (XV )", Moreover the identity V* = (J ® J)V(J ® J), where J,J
are the modular conjugations of S and $ [10], shows that (J @ J)O(J ® J) =0* =0~
But the main fact about the reversing operator is its non-involutivity in the quantum case,
see Proposition 3.4—in fact in this proposition it is enough to consider the restriction of
17(1 ® U) to H® p1H, as soon as & generates €. []

Example 3.3 (classical case). Suppose S = C*(I') for some discrete group I', with
the co-commutative coproduct given by d(y) =y ® y for all ye I' ¢ C*(I'). Then Irr %
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identifies with I" in such a way that v, ~idc ® y for every y e I', and the tensor product
(resp. the conjugation) of corepresentations then coincides with the product (resp. the in-
verse) of I'. In particular, the inclusion o’ = o ® y reduces in this case to an equality
o/ = ay, so that the classical graph of Definition 3.1 is nothing but the simplicial picture of
the Cayley graph associated to (I', A), with A = 2.

Besides, one has H = /*(T"), Sreq = Cy(T), S = ¢o(T") and the projections p, corre-
spond to the characteristic functions 1, € S of the points of I'. Moreover one has the fol-
lowing expressions for the Kac system of (S,0): V(1,®15) =1, ® 1,5 and U(1,) =1,-1.
From this it is easy to see that the hilbertian quantum graph of Definition 3.1 is nothing but
the /2-object associated to the directional picture (v, e, e, ) of the Cayley graph of (T, A).
The only non-trivial check concerns the reversing operator: according to Proposition 3.4,

one has 2V V = V*SV = E*XE so that ®* = @ is the classical reversing operator. []

Proposition 3.4. Let (H,V,U) be an irreducible Kac system [3]. Then the multi-
plicative unitary V is co-commutative iff V. =2XV*Z iff V(1 ® U) is involutive.

Proof. The direct implications are easy to check in the underlying locally compact
groups. Conversely, assume that J = XV*X. Then for any x = (id ® w)(V) € Sred, one also
has x = U(ild ®@ )(V*)U € USieqaU <= Sy, hence Sreq is commutative. Replacing V' by

!/
Ie
V one gets the dual version of this result: if ¥ =XV *X, then V is commutative. Now,
V(1® U) is involutive iff V(1@ U)=(1®@ U)V* iff 1@ U)V(1® U)X =2V,
which implies by the previous “dual” statement that ¥ is commutative, hence V is co-
commutative. []

Let us give now alternative expressions for the reversing, source and target operators
in terms of the Hopf x-algebra structure of &, and study the intertwining properties of

these operators relatively to the representations of the dual Hopf C*-algebra S.
Lemma 3.5. Let x, y €. < Sieq, we have
V1@ U)o (Ay®@AR)(x® ) = (A ® Ap) o (id®@x) (x @ 1)5()).

Proof. 1In this proof we will write ® in place of V(1 ® U), although we do not
necessarily restrict ourselves to K. We have

Oo(A®AN)X®Y)=(x®id)oB®o (AR A (1 ® y),

so that it suffices to consider the case when x = 1. Let us use the expressions (3) and (4) of
Uand V:

o (A®@AN1®y) =21 @ U)V(1® U)o (A @A) (fi xx(y) ®1)
=2X(1® U)o (A ® Ap) 08(fi xx())).

It is easy to check that d(f- x a) = (id ® (f:)) (6(a)), hence

Qo (A ®AN1®y) =Z(1® U)o (A ®Ay)(id ® (fi%)) (6(x(1)))
=2(1® U)o (Ay ® Ap)(k ® (fix)K)ad(p).
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One recognizes then (1 ® U)2 =1®1:
o (An®@Ap)(x®y) =Zo (A ®Ay) o (k®id)ad(y)
— (A ®Ap) o (id®x)3(y). O

Proposition 3.6. Let € be the linear form on A, (&) defined by eo Ay = Ajoe. We
have the following identities:

(1) Ey=(1d®e€)oVand E; = (e®id) o Von KN (A, ® Ap) (S ® F).

(2) 2o (An®@Ap)(x®y) =An(xy) for x® ye S ® S, and Ey 0 © = EJ.

Proof- The co-unit ¢ being multiplicative, we have for all x and y in &
([d®2)(0(x)(1 ® y)) = &(y)(id ®&)d(x) = &e(y)x = (Id ® &) (x ® ),

hence E; = (id ® €) o V. In the same way one can write, using the identity ¢ o x = ¢ and
Equation (1):

([d®e)(id®x)(x® 1)d(y)) = (i[d®e)((x® 1)d(p))
= (e®id)(0(x)(1 ® y)),

which yields E; o (A, ® Ap)(x ® y) = Ap(xy) and E; = (e ® id) o V, thanks to the defini-
tion of E, and the expression of ® given by Lemma 3.5. Now, using these results and
Equation (2), we can proceed to the last computation, where m : ¥ ® ¥ — & denotes the
multiplication of .¥:

E;000 (A Q@A) (x® y) = Ap(x(m(id @ x)d(»)))
=e(P)An(x) = E1 o (A @Ap)(x®y). O
Proposition 3.7. Let us define 7: SA®2 — L(H) by the formula
#2(x @ x') = x(Ux'U). Similarly, let us denote by 7ty : S®* — L(K) the homomorphism such

that i4(x® Y@ y' @ x') = (x® y)(Ux'U @ Uy'U), and let us put §' =740 (1@ 1®4),
so that 6'(x) = (U @ U)Ld(x)E(U @ U). One has then, for any x € S:

(1) @0 (x®1) =4(x) 0 O,

2) o (1®x)=(1® UxU) o0,

(3) ©®0d'(x) = (UxU®1)0®

(4) E; 06(x) = x0 Ey and Ey 06’ (x) = UxU o E,.

Hence © intertwines the representations iy o (1d®1d®5) and 74 0 (5 ®id®id) of

SS®S on K. In particular ® commutes to 7t 0d°. Similarly, E, intertwines the repre-
sentations 7ty and 74 o (5 ®5) ofS ® S.
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Proof. Point (1) results from the identity &(x)= V(x® 1)V*. Writing
E; = (id®¢€)o®!, it implies the first relation of Point (4). For Point (3), one uses the
formula ® = (V' V)" and the fact that ¥ commutes to USU ® 1:

(UxU®1)® = (UxUR )V V'S =V (UxU® 1) V*E
=V V(U U)V(x® DV (U U)X
= V'V (UQ U)(x)(UQ U)E = V*I*Ed (x) = @' (x).

Composing on the left by (id ® €), one obtains the second relation of Point (4). For Point
(2), simply notice that ¥ is in M(USU ® S§), and hence commutes to 1 ® USU. []

4. Ascending orientation

In the case of a classical tree, the ascending orientation associated to a chosen origin
defines a subspace K, of the />-space of edges K. The aim of this section is to introduce
and study such a subspace in the case of quantum Cayley graphs. The next definition relies
on the links between the quantum and classical Cayley graphs, the latter one being en-
dowed with the origin 1.

Definition 4.1. Let S be a Woronowicz C*-algebra and p; a central projection of S
such that Up; U = p; and pop; = 0. Assume that the classical Cayley graph associated with
(S, p1) is a tree, and denote by | - | the distance to the origin 14 in this tree.

(1) For any ne N\{0,1} we put p, = > {p,||o| =n} € Z(S).

(2) We call p.. = 3(pn ® p1)0(pus1) and po. = 3"(pu ® p1)d'(pus1) the left and
right ascending projections. Put p,_ =1—p,i, p_.=1— p,.

(3) We call p;; = p..p.+ the ascending projection of the quantum Cayley tree, and
we denote by K, its image. We define similarly

P+ = P4sPs—y DP—+ =P-Ps+ and p__=p_.p.,
K+, = p+,K7 K,+ = p,+K and K _ = p,,K.

Remarks 4.2. (1) We have |¢| =1 < o€ & and |o| = 0 < o = 14. In particular the
first point of Definition 4.1 is consistent with the notation py and p; used in Definition 3.1.

(2) Take o e Irr % with |a| = n+ 1. We have d(p,) = 30(p.)(pp ® pg'), where the
sum goes over the ordered pairs (f, ') such that « = f# ® p’. Hence

3(p2)(pn ® p1) = 0(ps) (P ® p1),

where o' is the vertex preceding « in the classical Cayley graph g. Hence we get the fol-
lowing expression of p,., in terms of the classical ascending orientation ¢, of g:

Per = >, Vi (py ®@p)V(id ® p1).

(o' o) € ey
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Recall that V' plays the role of the endpoints operator, which implements in the co-
commutative case the equivalence between the simplicial and directional pictures of the
Cayley graph.

(3) Let J (resp. J) be the modular conjugation on H induced by the involution of S

(resp. S). We know from [10] that U = JJ, [J, p,] = 0 and (J @ J)d(p.)(J ® J) = Z(pa)Z.
From this we can deduce the following relation between p., and p,.:

pes=( @ )pr (T @ J).

Hence p., and p,, come from the same projection of M (S‘ ®S ) acting respectively on the
left and on the right of K. In particular they commute and are equal in the co-commutative
case. [

In the next proposition we examine the links between the ascending projections and
the reversing and target operators. The first point of the proposition shows that the re-
versing operator switches the left and right versions of the quantum ascending projections:
this is the reason why it is necessary to use both p,. and p,, in the general case.

Proposition 4.3.  We use the hypothesis and notation of Definition 4.1.
(1) We have p,— = Op,,0®" and p_, = ®"p,.®. More precisely:

Op1(pn ® id) = (P11 ® id)p*,@),
@p,*(pn ® ld) = (pnfl ® id)P*+®-

(2) We have E;py— = Erp_. =0 and
PnEr = Ex(pp-1 ®id) pyy + Ex(pn ®id)p__.

Proof. (1) We put u=Ad(U). Using the formulae V(p, @ 1)V* =6(p,) and
V*(1 ® ps)V = d(py) for the dual coproduct, and the fact that p, commutes to U, we see
that

V*(pa®@ 1)V = (U® DEVE(Up,U @ NEVE(U @ 1)
= w®id)a(V*(1® p,)V) = (u®id)ad(py).
We use this expression in conjunction with the definition of ®:
Op . (pa ®1)0" = V(p, ® p1)(u ®id)ad(pas1) V"

=(1® Pl)g(prﬂ I}(” ® id)ag(pnﬂ) V= S(Pn)(pnﬂ ® p1).

To prove that the last expression is equal to p,_(p,+1 ® p1), it is enough to check that we
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obtain p,_ by summing it over n. But (p, ® pl)g( pw) vanishes as soon as n’ +=n + 1, so
that

S (Past ® p1)O(pa) + Par = 32 ((Pus1 ® p1)O(pn) + (Pn ® P1)O(pur1))
= (X(pn ® p1)) (X 0(pw)) = idi.

~ (2) The last point of Proposition 3.7 shows that piEx(p;® p1) equals
E(pi)(p1 ® p1). In particular Ex(py, ® p1)prt = Pni1E2psy and similarly

E>(pn ® p1)pse = P Eaps—.

On the other hand one has, using Propositions 3.6 and 4.3:

E>(pn ® p1)p—« = E1O(py ® p1)P—« = Ei(Pn-1 @ p1)p«i©
= pn-1E1p© = pp 1 Eap,,
and similarly
Ey(pn @ p1)P+s = Pri1 E2pis.

As a result E>(p, ® p1)p—+ equals both p,.1E;p_, and p,_1E;p_, so that it must
vanish, and in the same way E>(p, ® p1)p+— = 0. In particular p,E» = p,E>(psv + p——),
and the last statement of the proposition results then from the identities

Pubapey = Ex(pn1 @ pr)psr and  puEap. = Ex(pui1 @ p1)ps
that we proved above. []

Until now we have used a very minimal notion of “tree” for our quantum Cayley
graphs, namely the fact that the corresponding classical Cayley graph should be a classical
tree. However this notion is too weak for our purposes, because it doesn’t take into account
multiplicity issues that appear in the quantum case. More precisely, let us define the “full”
classical Cayley graph & associated to (S, p;) in the following way:

v=Irr%, e¢={(0,0,7,i)|y€ Z,a =o® ywith multiplicity order i},
e(“? a’? y7 i) = (Cx7 al)’ 0(“7 a/7 y? i) = (a/7a7 )77 i)

Here Z stands for the set of corepresentations associated with p;, like in Remark 3.2.1. The
image of ® by e is the classical Cayley graph g of Definition 3.1, but the map e needs not to
be injective in general. The component y of an edge (o, o', 7, i) is called the direction of the
edge. In the rest of this paper, we will assume that the full classical Cayley graph & with
origin l¢ is a ““directional tree”, meaning that it is a tree and that the ascending edges
starting from a given vertex have pairwise different directions.

In Lemma 4.4 we state some basic results about classical Cayley graphs and give a
corepresentation-theoretic formulation of the extra assumptions introduced above. Propo-
sition 4.7 shows that our framework is the right one for the study of free quantum groups,
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i.e. free products of orthogonal and unitary free quantum groups [16], [5]. Finally we prove
that the quantum ascending orientation K., = K behaves nicely in this framework: the
target operator induces a bijection between ascending edges and vertices orthogonal to the
origin, exactly like in the classical case.

Lemma 4.4. Let S be a Woronowicz C*-algebra and py a central projection of S such
that Up\U = p; and pyp, = 0. Assume that the classical Cayley graph g is a tree and denote
by (x®7y), (resp. (¢ ® y)_) the sum of the subobjects of (o ® y) which are further from (resp.
closer to) 14 than o.

(1) For every o € Irr € one has |o| = |a| in g.
(2) The full classical Cayley graph ® is a directional tree iff
— foralloelrr% andy e 7, (« ® ), is irreducible or zero and

— for all weltr® and y +y' €7, («®7y), and (@ '), are inequivalent or
zero.

(3) We assume that ®& is a directional tree. For any (o,y) € Irr¢ x &, one has
(e ®7y), =0iffdimy =1 and o is the target of an ascending edge with direction 7.

(4) If ® is a directional tree and (o, f) is an ascending edge then dim f = dim o, with
equality iff the corresponding direction y € & has dimension 1.

Proof. (1) For this first point g does not need to be a tree. Because ¥ = 7, it is
enough to prove the following property: |a| < n iff there exist elements y,,...,7, € Z such
that o c y; ® --- ® y,. We proceed by induction over n: for n = 0 the property is satisfied
because o < 1¢ < o = 14. Assume now that the property is satisfied for a given n = 0 and
consider an « € Irr % such that |«| = n+ 1. By definition of g there exist fev and y e &
such that || =n and « = f ® 7, and the induction hypothesis for S gives the desired in-
clusiona <y ® --- ® 7, ® y. Assume conversely that x < y; ® --- ® y,,1 and let (§,) be a
maximal orthogonal family of irreducible subobjects of y; ® --- ® y,. Because o is irre-
ducible the inclusion « = @(f; ® y,,;) implies that « = f; ® 7, for some k. By induc-
tion hypothesis one has |f;| < n, hence |¢| < n + 1.

(2) Recall that the endpoints map e induces a morphism from & onto g, the latter
one being a tree. Therefore ® is a tree iff e is injective, and it is enough to check it on the
ascending orientation ¢, < e: this leads to the condition that the subobjects (¢ ® ), for a
given «, should have pairwise different subobjects without multiplicity. The tree ® is then
directional with respect to the origin 14 iff the corepresentations (¢ ® ), have at most one
subobject.

(3) and (4) We proceed again by induction on the distance to the origin: let (o, f)
be an ascending edge with direction y and assume that dimf = dimo, with equality
iff dimy > 1. Take y’ € &, the assumption on & shows that (f®)') = (f® '), or
(F®7)=a®(B®y'),. In the first case, which can only happen when (f ® y’), + 0, one
has clearly dim(f ® y’), = dim § with equality iff dim )" = 1. On the other hand, we are in
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the second case iff y’ = 7, because of the equivalence « = f ® y' & f = « ® J'. Moreover
one has then (f®y'), = 0 iff dimf#dim y’ = dim«, which is equivalent to dimy" =1 by
induction hypothesis. If on the contrary dimy’ = dimy > 1, the strict case of the induction
hypothesis gives

dim(f ® '), = dimpdimy’ — dima = 2dim ff — dimo > dimpg. [

_ Proposition4.5.  Let S be a full Woronowicz C*-algebra and p; a central projection of
S such that Up,U = p; and popy = 0. If the full classical Cayley graph ® is a directional
tree, then

— Sis a free product of a finite number of free Woronowicz C*-algebras A,(Q;) and
Au(Q)), with 0;0; € Cid and Q; invertible,

— p1 is the sum of the central supports of the respective fundamental corepresentations
of these Woronowicz C*-algebras.

Conversely the full classical Cayley graph ®& of any such pair (S, p1) is a directional
tree.

Proof- The classical graph g being a tree, the set Irr @ of its vertices lies in one-to-
one correspondence with the set of paths without half-turns starting from the origin 14.
Because g is isomorphic to the full graph ®, these paths are characterized by the finite se-
quences of the directions they follow. Finally, Lemma 4.4 shows that the finite sequences
(y;) of elements of & that arise in such a way are exactly the ones that fulfill the condition
Vi1 £ 7; ordimy;, ; > 1 for each i.

For every pair {y,7} < & with y =7 (resp. y + 7), the universal property of free
quantum groups gives a Hopf homomorphism from some A4,(Q) (resp. 4,(Q)) onto S,
where Q is a matrix such that QQ e Cid (resp. is invertible). By universality of free
products, one obtains then a surjective Hopf homomorphism @ : F — S, where F is some
finite free product of free quantum groups. By definition, for each factor 4,(Q), 4,(Q) < F
the fundamental corepresentation U and its conjugate are mapped by id ® ® onto the
corresponding pair {y,7} = 2.

On the other hand, the starting remarks on the structure of g show that Irr % is the
monoid generated by & and the relations {y7 = yy = 1|y € 2,dim y = 1}. Hence ® induces
a bijection between Irr % and the set Irr # of irreducible corepresentations of F (up to
equivalence)—see [19], [4], [5] for the description of Irr # and notice that 4,(Q) and 4,(Q)
are respectively isomorphic to C*(Z/27) and C*(Z) when dim Q = 1. This proves, using
[21] and the fact that we are dealing with full Woronowicz C*-algebras, that @ is injective.
The statement that & is a directional tree for any free product of free quantum groups
follows easily from the above mentioned description of Irr . []

Example 4.6 (free quantum groups). Let us picture the simplest cases of Proposition
4.5. When dim Q > 1 and QQ e Cid, the classical Cayley graph of 4,(Q) endowed with its
fundamental corepresentation is the half line with vertices at the integers. When dim Q > 1
and Q is invertible, the classical Cayley graph of 4,(Q) is drawn in Figure 1. []
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Figure 1. Classical Cayley graph of the unitary free quantum group.

Proposition 4.7. Let S be a Woronowicz C*-algebra and p a central projection of S
such that UpyU = p;y and pop1 = 0. Assume that the classical Cayley graph & of (S, p1) is a
directional tree. Then the restriction of E, to K is injective and its image is (1 — po)H.

Proof. Let aelrr% and y € Z be such that |«| = n and (¢ ® y), #+ 0. The subspace

(P« ® p,)K is irreducible with respect to the representation 74 of S®4 and equivalent to
(OC ®7) ® (¢ ® ). By definition, p.i(py ® p;) = 5(pn+l)(pac ® py), so that p*+(pac ® py)K
is equivalent to (2 ® 7). ® (x ® y) with respect to the representation 74 o (0 ®id®id) of
S$®3_ Similarly, and thanks to the first point of Lemma 4.4, the subspace p.., (P2 ® p,)K is
equivalent to (1 ®7) ® (1 ® 7). . with respect to the representation 740 (id ® id ®J).
Flnally, Dt ( P2 ® py)K is equivalent to (x®7y), ® (x®y), for the representation
f40 (0@ 6) of § ® S, and therefore irreducible by hypothesis.

Recall now from Proposition 3.7 that E; intertwines 74 o (5 ® 5) and 7,. Hence the
restriction of E; to (p, ® p,)K.+ is a multiple of an isometry, and one can compute the
corresponding norm by considering the image of particular vectors, for instance characters.
One has by Proposition 3.6

Expis (4, ®2,) = Eapas (1, ® 1) = Exd(pni1) (2, ® 1)
= pn+1E2(on ® X,) = Dn+1 (Xoc@"/)

= Pt (X (a@y) +X(o:®y)+) = Xa®y), -

The norm in H of the character of an irreducible corepresentation equals 1 (cf. [20], th. 5.8),
so that one eventually gets the following lower bound for the norm of E>p. ,(p, ® p,):

||X(oc®y)+|| ~ ||X(oc®/)+|| .

8 E x ® = = B
(8) [E2p++ (P2 ® py)| 191+ @ 1)l = 1lxa @ 1,

To conclude, let us remark that E,p,. maps the respective orthogonal subspaces
P++(Px ® py)K onto the subspaces p(,q,) H, which are pairwise different by hypothesis,
hence orthogonal, and whose sum equals (1 — po)H. The operator E; is therefore injective
and has dense image in (1 — po)H, but this image is closed by (8). [

Remark 4.8. We will need in Section 8.1 to have a slightly more general and more
precise result than (8). Let /# be the algebraic direct sum of the subspaces piH, and let
&, be the operator defined on J# ® # in the same way as E,, that is, by Proposition 3.6,
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coming from the multiplication of S. Let us also extend p,; to # ® # by putting
Poi =Y. 0(pnik)(Pn ® pr): we have then 622, (id ® p1) = Expsr = Erpi+. The first ar-
guments of the preceding proof are still valid if one replaces y with any f e lir%: as a
matter of fact the hypothesis implies that « ® f contains at most one subobject J with
[0] = |a| + |p]. If such a J exists one gets the following generalization of (8):

1622, (P2 ® pp)ll = 116(P5) (22 @ )"

Let us remark that y, (resp. #,(1)) generates the invariant line of p,H (resp. H, ® Hjy)
with respect to the action of S. Moreover one has |y,| = 1 and ||z,(1)|| = /M, so that
%, in fact corresponds to #,(1)/+/M, in the isomorphism p,H ~ H, ® Hj, up to a phase
factor. Consequently, in the isomorphism p,H ® pgH ~ H, ® Hy ® H, ;® H; the vector
0(ps) (%, ® xp) corresponds to

(0(ps) ® id @ id) (,p(1)) / /M, My = 15(1)/ /M, My,

if one isometrically identifies Hs with the equivalent subspace of H, ® Hy. We therefore
get the following exact formula, from which (8) can be recovered by noticing that
Ms £ M, ® My:

M, My

P, =
|6:221.(p® Pl = /<21

OJ

5. Geometric edges

In this section we will study the Hilbert space K, = Ker(® + id) when the classical
Cayley graph ® is a directional tree. We consider Proposition 4.7 as an evidence that K, |
provides a good notion of “quantum ascending edges”, and we would similarly like to
know whether K, provides a good notion of “quantum geometric edges”. By this we mean
that there should be exactly one geometric edge for each ascending edge, which can be
more rigorously expressed in the hilbertian framework by the fact that the restriction
p++ : Ky — K should be invertible.

Of course the study of K, = Ker(® +id) is closely related to the problem of the
non-involutivity of the reversing operator ®. The next proposition provides a “weak in-
volutivity”” property which we will use for the proof of Theorem 5.3, as well as a technical
corollary obtained in Lemma 5.2. Notice that (p., + p__)K behaves as a subspace of
“quasi-classical” quantum edges in this regard.

Proposition 5.1.  Let S be a Woronowicz C*-algebra and p a central projection of S

such that UpyU = p; and pop; = 0. Assume that the classical Cayley graph ® of (S, p1) is a
directional tree. Then we have, for all n € N:

(Pt +P—-)O"(prs+ p—-) = (P1+ + P—-)O " (psy + p—-).

Proof. Inserting id = p., + p._ + p_, + p__ between the occurrences of ®*! in
®*" and developing, the statement of the theorem becomes an equality between two sums
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of terms looking like p. «®*'p,, O ...@*'p, . . We will in fact prove that these terms
N X 0 %o 1, € . . ny€n
are pairwise equal: for ¢;, €; € {4+, —} with i € [0, n], one has

(9) p66,€6®p€1,6f®’ : ‘®pe,,,1,5"171®p€n,€n

—1 -1 -1 -1
= Pey® D@ O pr o O D,

Let us proceed by induction over ne N, calling “rank 07 the trivial equality
De'.e'Pe.c = Per.e'Pec. Choose n > 1. As a first step, assume that there exists k € [1,n — 1]
such that e =¢,. Then the conclusion results straightforwardly from two applications
of the induction hypothesis at ranks k£ and n —k, with (e, €})o<;<, and (e, €))<i<),

respectively.

We assume now that ¢; = —e; for each i. If one side of (9) is non-zero, we necessarily
have (¢, €/) = (—€(, —€,) for all indices i: as a matter of fact, Proposition 4.3 shows that the
equalities €;,; = —¢] are required for the products in (9) not to vanish. In particular, we
have then e, = —e¢,. This proves that the equalities from the first step are sufficient to get
the identities p__ ®"p__ =p__ O "p__ and p.,O"p,, = p, . O "p, .. Moreover, taking
the adjoint allows to switch from € = —1 to ¢), = 1, so that it only remains to prove the
equality

Pi+®p_©---Op_Op _=p, O 'p, OO0 p O p _.

By adding terms from the first step we rather focus on the following equivalent
equality:

Pii®"p_+p O L p O p _+p @ p .

Using the fact from Proposition 4.7 that the target operator Ej; is injective on K, we can
compose on the left by E, and use Proposition 4.3 to get another equivalent equality:
E,®"p__ = E,O7"p__. But this is true since we have, from Proposition 3.6 and the defini-
tion of Ey: E,0% = E;© = E>, hence E0* =0 =F and E,0 = E,07'.

Lemma 5.2. Let S be a Woronowicz C*-algebra and py a central projection of S such
that UpyU = p; and pop, = 0. Assume that the classical Cayley graph & of (S, p1) is a di-
rectional tree. Then there exists a unique unitary operator W : K. — K_ such that

VkeN W(pi-©)p i =(p-+0")pi,.
Moreover we have Wp,_ ©® = p_,@ 'Wandp-_ ®@=p__ O 'Won K, _.

Proof. Let X (resp. X') be the operator from K, ® />(N) to K;_ (resp. K_.) de-
fined by X (¢ ® ¢x) =2 (p,_ @) ¢ (resp. X'((®er) =27%(p_,0 ) ¢). Thanks to the
coefficients 2%, the operators X and X’ are bounded, and it is easy to see that their ad-
joints are resp. given by

X =2 Np (@ 'py ) and X =327 Tip,(Op_y)F,

where we put Ty (&) = & ® ¢ for any & € K, ;. Let { be an element of Ker X*, for every k
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and n we have p++(®’1p+_)k(pn ®id)¢ = 0. In particular (@~ 'p,_)"(p, ® p1){ vanishes:
by Proposition 4.3 it is an element of (py ® id)K, which is contained in K, .. By a finite
descending induction on k € [0, n], we deduce that

O 'p ) (P ®p1). = P (O P ) (pa ® p1)C + OO ') (p @ p1)C

vanishes, and in particular (p, ® id){ = 0 for any n. Hence X* is injective and X has dense
image. In the same way, X' has dense image.

To prove the existence and the uniqueness of W, which is characterized by the iden-
tity WX = X', it is therefore enough to show that || X#|| = || X'y|| forany n € K, ® /2(N),
or as well, that X*X = X" X’. We will work on each subspace K, , ® e; separately, and we
are thus led to prove for every k and / the equality

(10) Pt (©@ 0 ) (P40 Py = pr(Op_ ) (P O ) p

which can also be written

pi®'pp @ (1—p )Op, - py Opyy
=p®p - p Ol —p )0 p p O p .

We proceed by induction on min(k,/) and distribute (1 — p__) on both sides: the terms
coming from p__ are equal thanks to Equation (9) of Proposition 5.1, and the terms com-
ing from 1 are equal by induction hypothesis. When &/ = 0 but (k,/) # (0,0), both sides of
(10) vanish, and when k =/ = 0, (10) is trivial.

Because X has dense image, it suffices to check the equalities Wp, @ = p_ @~ 'W
and p__©® = p__O ' on the image of (p+,®)kp++, for every k. The first one follows
immediately from the definition of W:

(Wpo®)(ps_®)pss = W(ps—®) ' py = (p_ @ H<Hp

and

(P7+®_1 W)(P+f®)kp++ = P7+®_1(P7+®_1)kp++ = (P7+®_1)k+lp++-

For the second one, we use furthermore Equation (9) from Proposition 5.1:

(p——O ' W)(ps-©) i =p O (p_,0 )p,,
= (P——®)(P+—®)kl7++- U

Theorem 5.3. Let S be a Woronowicz C*-algebra and py a central projection of S
such that UpyU = p; and pop; = 0. Assume that the classical Cayley graph & of (S, p1) is a
directional tree. Then the orthogonal projection from K, to K. is injective and its image is
given by

p++Kg={CeKii|Ime K, (id+ p;-0)(n) = p+-OL}.
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Proof. By definition, a vector ¢ € K lies in K, iff ©(¢) = —¢&, which we split in two
equations: p, & =—0p.& and p_,& = —0O !p, & Let us first analyze these conditions
with respect to the decomposition K = @ (px ® id)K, using Proposition 4.3:

VneN pi(pn®id) = —Opi(pr1 ®1d)S,
VieN p_(p,®id)¢é=—-0""p, (p,1 ®id)¢E.
If p,&=0, this gives a linear induction equation for ((p, ®id)¢) , and since

(po ®id)¢ = p1(po ® id)¢ = 0 the whole sequence vanishes. Hence the restriction of p.
to K, is injective.

Now we use the decomposition id=p,, +p,_ +p_, + p__ to get a new system
equivalent to the conditions p, ¢ = —@p..¢ and p_.& = —© 'p,,, which characterize
vectors in K

(11) pi-C=-pi-Opi &—p Op, ¢,
(12) p--C=-p__Op {—p _Op. ¢,
(13) pol=—p @ 'p E—p O 'p ¢
(14) pil=—p @ 'p —p ,©p &

Let (e K,. be as in the statement of the theorem: there exists # € K, such that
(id+ p+-O)(n) = p-OL. Pt E = —n— Wn+p__0O(n — (). In this case, the above sys-
tem can be written in the following way:

(117) —n=—ps Ol + p, On,
(12) p--O@n =) =-p-_Ol+p__0On,
(13) p-On—0)=-p__ O '+p 0wy,
(14) ~Wn=—-p_.©0 ' +p . 0"Wy

We can notice that (11’) amounts to the hypothesis on { and #, whereas (12') is trivial.
Proposition 5.1 and Lemma 5.2 show that (13’) is always satisfied. Finally the hypothesis
on { and # yields Wy = Wp,._Of — Wp,_Op, and (14’) follows then from Lemma 5.2.
Hence ¢ lies in K, and { = p, {isin p,, K,. The reverse inclusion can easily be obtained
from (11): if { equals p, & with ¢ € K, we put 7 = p,_¢ and the above mentioned equa-
tion reads then (id + p,_®)() = p,_O(, as already noticed. []

6. Edges at infinity: the set

The expression for p,, K, obtained in Theorem 5.3 is trivial in the classical case be-
cause the projection p,_ vanishes then, but it has to be analyzed in greater detail in the



Vergnioux, Quantum Cayley trees 123

quantum case. More precisely, we need to understand the interaction between p,_ and G,
and we will see that it can be described by a purely quantum object: the space of “edges at
infinity” K., that we introduce in Definition 6.1.

This definition bases on the simple remark that the operator p, ®p,_ maps
(px ®1d)K, _ to (pry1 ®1d)K,_ by Proposition 4.3, and acts therefore as a right shift in
the decomposition of K, _ given by the distance to the origin in the classical Cayley graph.
It is then very natural to introduce the associated inductive limit K.,. Proposition 6.2 serves
as a more precise motivation for this definition and shows that the existence of K., is an
obstruction to the surjectivity of p,, : K, — K, ,. Notice that in the classical case, the
subspaces (p; ® id)K, _ vanish, so that K., equals zero.

Definition 6.1. Let S be a Woronowicz C*-algebra and p; a central projection of S
such that Up; U = p; and pop; = 0. Assume that the classical Cayley graph associated with
(S, p1) is a tree.

(1) Put r=—p,_Op,_, s= p,;_Op,, and define the inductive limit Hilbert space
K, = lin((pk ®id)K._,r).

(2) Let Ry be the natural morphism from (px ® id)K, _ to K, and denote by R the

linear map > Ry defined on P(pr ® id)K, .
k=0 alg

Proposition 6.2. Let S be a Woronowicz C*-algebra and p a central projection of S
such that Up,U = p; and pop; = 0. Assume that the classical Cayley graph & of (S, p1) is a
directional tree.

(1) The map Rs extends to a co-isometry from K, to K.

(2) The subspace p.. K, is contained in Ker Rs. Moreover if the Ry are injective one
has, denoting by p>y the sum Y p; ® id:

izk
P+ Ky = {L e Ker Rs| (| R Rsp =)y € £2(N)}.

Proof. (1) We start with a simple computation, using Proposition 4.3:

' +sst=p. Op, O'py +p. Op, Op,
=p+-0Op,O'p. =p, OO p, =idg, .

Notice that Ry = 0 because p,_(py ® id) = 0, and that Ry, 1r = Ry for any k € N, by def-
inition. We have then, denoting by p<, the sum ) p; ® id:

i<k

k—1 k—1
(Rsp=i)(Rsp=i)” = ¥ Ripiss i,y = 3 R (1 — rr*)RY,
i=0 i=0
k=1 * * *
= Z (Ri+1Ri+l - RiRi) = RiRy.
i=0
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The maps Ry being contractive, it follows that Rsp<; and Rs itself are contractions. Be-
cause p<; converges to the identity in the *-strong topology, (Rsp<i)(Rsp<i)* converges
strongly to (Rs)(Rs)", and so it remains to show that Ry R; converges to the identity of K.
This is actually a general fact for contractive inductive limits: for any / = k = 0 and any
ve (pr®id)K,_, we have

% 2 % — 2
IRIR} (Riy) — Riy||” < |Rf Ry — 'y
and
IR, Ry — ' p||* = | R} Ricy||” — 2R(R; Rey | v p) + ||r'*p||?
= [|R; Ry ||* = 2/|Recy||” + |||

I—k 112 2
= Il = TRkl

This upper bound tends to zero as / goes to infinity, by definition of the norm of K,,. The
union (JIm Ry being dense in K, this proves that R;R/ — id.

(2) Let{ € pK,: by Theorem 5.3, there exists # € K _ such that (1 — )y = s{. This
can also be written

Vke N*  (pr ®1d)y = s(pr—1 ®1d){ + r(pr—1 ® id)y
k=1
sVkeN* (p®id)y =3 " ls(p; ®id)¢
i=0

(15) = VkeN" Ri(pr ®id)n = Rsp<i—1¢.

The right-hand side of this equality converges to Rs{ when k goes to infinity, whereas the
left-hand side tends to zero. Hence p, K, — Ker Rs. Now, if the R; are injective, the im-
plication leading to (15) is an equivalence, so that a vector { € K, is in p, K, iff (15)
defines a vector 7 € K _ iff the orthogonal sequence (R; ' Rsp<j_1{), is summable in K _.
Finally, we have clearly Rsp<i_1{ = —Rsp=,{ when ( lies in Ker Rs. []

The rest of this section will be devoted to a more detailed study of K.,. We first want
to compute exactly the weights of the “‘shift” p,_®p, _: this is accomplished in Lemma 6.3
and relies on the technical results of Section 2. It is then easy to show that the maps Rj are
indeed injective, and therefore that K, is infinite-dimensional in the quantum case. Using
the explicit result of Lemma 6.3 we are also able in Theorem 6.5 to make more precise the
second statement of Proposition 6.2: it appears that K., is the only obstruction the non-
surjectivity of p,, : K, — K, except when the free product (S,6) under consideration
contains one of the “exceptional cases”

0 1 0 1 1 0
A0<_1 O)’ A0<1 O> and Au<0 1).

Let (yy,...,7;) be a finite sequence of directions y; € Z. There is at most one vertex
o € Irr % such that the geodesic from 14 to o follows successively these directions: we will
then put o = y; ---y,. Now choose y € Z and put y,; =7, 75,1 = y. We denote by o the
vertex 7y - - - 7, when it exists. Lemma 4.4 shows that the set of values of & is {0, 1} when
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dimy=1 and N otherwise. We define in both cases the associated projection
P, =3 p, ® p;,. Itis a central element of M (S ® S), hence it commutes to the projec-
tions p,. and p.,. Moreover one has by Proposition 3.7:

OP, = 3 O(py, ® p3,) = 2.0(py)(1 ® p,,)O
= Z(p*+(p1k—l ® p'//c) + p*—(p“kﬂ ® pl’/c))(a = PV@'

On the other hand, the projections p, and p,, commute respectively to the repre-
sentations 74 o (0 @ id ® id) and 740 (id @ id ® ) of S® S ® S on K, by definition. In
particular they both commute to the representation 74 0d° of S, as well as ©: see Proposi-
tion 3.7. Hence .., p.+ and O all commute to the projections g; = 740° (par)- Let us recall
in the case dimy > 1 that (p, ® p; )K,_ is equivalent to o ® &1 with respect to
#400°, so that q1(pr ®1d)P,K_ is non-zero iff /e [1,k], and is then irreducible and
equlvalent to oy. In the rest of this section we will study the inductive system
((Pk ®id)K, _, r) in the decomposition given by the projection ¢;P,.

Lemma 6.3. Let O be the reversing operator of a quantum Cayley tree, and choose
yeZ with dimy > 1. We put m =M, and m_y =0. Let €,¢€],€e,¢) € {+,—}, with

!/

e, = —e€1. For any k = 1 and | € [1,k] the operator Per, ;O ¢ Is a multiple of an isometry

n (pr-e ®id)pe, aqiP,K and
i
-1 if e1€] * e},
My

mpmj—

||(pk ® Pl)Pez,ez’®Pa,e{‘ﬁR/H =
1 —

3 / /
if €1€] = e26;.
mjmj._1

Proof. We can assume here that S = A4,(Q) or 4,(Q) because dimy > 1: see the
proof of Proposition 4.5. We start with p,_®p,_, by reorganizing the terms of the product
and composing on the left by ©*:

(px ®id)p-Opy qiP)|| = (O p1.®) ps_qip (P, ® Py,

We know from the proof of Proposition 4.7 that the space pi.(py_, ® p;, )K is irreducible
for the representation 74 o (id ® id ®5) of S® S® S and 1dent1ﬁes with o—1 ® 7, & .
Let us study how ®*p,®, p,_ and ¢; act in this identification.

— We have p,, = #(0 ® id ®id)(1 ® p), where p = 30(pui1)(p1 @ pn). Lemma
3.7 shows that @ p,,0 = 74(id ® id ®5)(1 ® p), which hence acts on o ® y;, ® o as
1 ® p, i.e. as the projection onto o1 ® &y 1.

— We know again from the proof of Proposition 4.7 that p,_ acts in the identifica-
tion like the projection of o1 ® y;, ® o onto ax_o & .

— Finally ¢; = 7%453(p2;) corresponds to the projection of a;_| ® 7, ® o onto the
sum of its subspaces that are equivalent to oy;.

Therefore Lemma 2.4 gives exactly the desired result for ||(px ® id)p4—Op_q/P,]|.
We get then the norm of (px ® id) p;—@p ¢, P, by noticing that the sum of the squares of
both norms equals 1, and we proceed in the same way for the other cases. []
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Remarks 6.4. (1) When /= 0-—and this includes the cases when k=0 or
dim y = 1—, we automatically have p,_qo = p_qo = 0. In particular

P++Op__qo = Op__qo,

and therefore Lemma 6.3 is replaced in this case by the statement that p, ®p__ and
p--Op. are isometric on p__goK and p,qoK. In fact the subspace ¢oK, the analogous
subspace 7,0(po) H and the corresponding restrictions of ® and E are exactly the hilbertian
objects associated to the classical Cayley graph g.

(2) Lemma 6.3 only concerns the “subtrees” P,K, but this is enough to get results
about the whole of K, thanks to a “cut-and-paste” process that we explain now. Let .# be
the set of ordered pairs (f,y) € Irr ¢ x & such that the last direction followed by the geo-
desic from 14 to f is different from 7—including (14, y) for all y € 2. For such a (f,y) we
denote by S, the vertices on the ascending path starting from £ and taking the directions
7,7, .-, and we call Py, the sum of the ps ® pj;,. Because the edges of the classical Cayley
graph g are walked through once by exactly one of these paths, we see that K is the or-
thogonal direct sum over .# of the P, K. Notice that P, = Py, .

Now we use the “extended target operator” &, : # ® H — H, i.e. the operator in-
duced in the GNS construction of the Haar state by the multiplication of S. Take (f,7) € .#
and denote by oy the objects constructed from (1¢,y) as above. By definition of .# we have
(f®y)_ =0 hence f; = f® y. More generally, f ® oy is irreducible and equivalent to
By for every k, so that the restriction of &> ® id to ppH ® P,K is an isometry onto P, K:
this is a trivial case of Proposition 4.7 and Remark 4.8. For the same reason one has
(Br @) =~ B ® (o ® ), which implies that p,, (6 ®id) = (6> ® id)(id ® p.4 ), and
the similar relations for p.,. Moreover we also have O(&; ® id) = (£, ® id)(id ® O) be-
cause S ® 1 commutes to ®. []

Theorem 6.5. Let S be a Woronowicz C*-algebra and py a central projection of S
such that Up,U = p; and pop; = 0. Assume that the classical Cayley graph ® of (S, p1) is a
directional tree.

(1) The maps Ry are injective. As a result, the space K, is infinite-dimensional when-
ever S is not co-commutative.

(2) If we have M, %2 for all y e &, then p, K, = Ker Rs. Otherwise p..K, is a
strict, dense subspace of Ker Rs.

Proof. (1) Thanks to the preceding Remark 6.4.2, it is enough to study the re-
strictions of the considered objects to the subspaces P,K with ye &. Let / € N, we can
suppose that / € [1, k], and in particular that dimy > 1: otherwise p,_(px ® p1)q;P, =0
hence ¢, P,K doesn’t meet the definition set of Ry. Because the subspaces (pr ® id)p,_q/P,
are irreducible, and by definition of the norm of K, we have

. . 0 .
1Riqr Py || = lim||r*(pre @ id) g, P, || = l_{)llp+—®p+—(pk+,- ®id)g: P |-

To prove that this infinite product is non-zero we use the quantitative result of
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Lemma 6.3. Recall from Lemma 2.1 that the sequence (m) satisfies the induction equation
mi_1 —mym; +m;.; =0, so that we can write m; = (a'*! —a="1)/(a —a™") for some
a>1 when m; > 2, and m; =i+ 1 when m; = 2. It is now very easy to check that the
following infinite sum is finite:

© . 1& mpmj_1
Log Q\|p+f®p+f(pi ®id)q:P|| = 22L0g<1 - ) > —c0.

mi1m;

Note that we have ||R¢q/P,)|| — 1 when k — co, and in particular the norm ||¢,;P,R; || is
bounded with respect to k. We will need to know for the second point that it is even
bounded with respect to k and /, when m; > 2. To see this, check that my;/m; < a1 when
! <i and conclude that

Vkz1,1e[l,k] LogllReq:F)l| 2 %Z Log(l —a ?).
i=1

Now if there indeed exists a direction y € & with dimy > 1, the injectivity of Ry
implies that dim K, > dim(px ® p1)p+-P,K = dimay_; dim o1, which tends to infinity
with k according to Lemma 4.4.

(2) We will use the decomposition given by the ¢;P, to study the expression
of p,,K, obtained in Proposition 6.2, and in particular the operator Rsp>j; re-
stricted to KerRs. If /=0 we have p,,PK, = P,(KerRs)=P,K,, since we are
considering a classical graph. Now we assume that /= 1. In particular the map
st (pr ®id)qi P K4 — (pr+1 ®1d)q P, K, is bijective for any k = [ according to Lemma
6.3, and hence Ry;1s: (pr ®1d)qP,K, — K., is injective. Therefore it is possible to
unitarily identify all the subspaces (px ® id)g;P, K to their common image G; = K, in
such a way that Ry 1sq, P, identifies with 4, ;1dg,, where

mpmj—1

it = || Rics 1591 Py || = || Ric1q1 P || :
My 1My

In particular the operator ((px ® id)(), — (Rsp=i{); from ¢;P,K., to G)" identifies then
with the augmentation by G; of the matrix A; = (4;,/9j==1); ;-

(2a) We start with the case m; = M, > 2, which is particularly simple. As a matter of
fact, A; is then bounded, even as an operator from /*(N) to />(N), and uniformly with
respect to /: we have

2 L\
= (Slin=i) = S SIRwarl )
Y AN

mj1m;

a2

(a> = 1)(a—1)*

lIA

(Z a7<j+171)>2 _
1Nz

1

I\%

using the same estimate for m7;/m; as in the first point. As a result, for any vector { € P, K,
the sequence (Rsps (), is square-summable. The operators R;! being uniformly bounded
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in our case, the sequence (R;!Rsps (), is also square-summable. Therefore the condition
of Proposition 6.2 is satisfied by any vector in P,(Ker Rs).

(2b) Now we address the case m; =2. Let ¢ >0, there exists / =/ such that
|RiqiP,|| = 1 — & for every i = I. We have then the following inequalities:

G G
G+2U+1)~ J+2)(+1)

/ 2042
o Gimin(l— &) <) Fiminy < 2
iziz1( )l+]+2_ J10jzizl S T

= (1 = &)0i jzritiy 1] S A+ A]

Ojzizr(l — &)

A
>

j, 10221 < 0j2i

\sz
v
/\

and Ar < 21+ 2)[ ],

where we put y; j =@{+j+ 1) . The last two inequalities are understood in the co-
efficientwise meaning, but it is well known that this implies norm inequalities, because all
the coefficients are non-negative. Hence we have

I(1—¢)
2

1 "
102zt il = 5 1A+ A= A = 21+ 2) [ 11

Now we have in the left-hand (resp. right-hand) side a compact perturbation of (resp. ex-
actly) the Hilbert matrix M = [y, ;], which is known from the theory of Hankel operators
to have a norm and an essential norm both equal to /2 (cf. [11], th. 5.3.1). Hence we ob-
tain, letting furthermore ¢ go to zero, the estimate /n/4 < |A/]| < (I + )7

From this we conclude that every vector of ¢;P, K, satisfies the condition of Propo-
sition 6.2—recall that the operators ¢;P,R; ! are uniformly bounded with respect to k. As
a result, p, K, is dense in @ ¢,P,(Ker Rs) = Ker Rs. However, p,,K, is not equal to
Ker Rs. As a matter of fact, the lower estimate we have obtained proves that there exist
vectors (; € ¢;P,K, . such that ||{;| =1/ and ||(Rsp=«(;),|| = n/4. Moreover one can
assume that Rs({;) = 0: this only corresponds to composing A; on the right by a co-rank
1 projection, which is a compact perturbation. One has then { = ZCZ € P,(Ker Rs), but
(Rsp=i() is not square-summable. []

7. Edges at infinity: the action

In the previous section, the interest of the Hilbert space K., mainly lays in its relation
with the Hilbert space of geometric edges, via the projection p, .. The aim of this section is
to endow K, with a representation of S;.q, which will turn it into an interesting geometric
object on its own. On the way, we will be led to study certain aspects of the regular repre-
sentation Syqg = L(H) which can be of independent use: see Lemma 7.1 and the remarks
after it.

A first step however will be to notice that K., can easily be equipped with a repre-
sentation of S, namely the inductive limit %, of the representation #46°. As a matter of fact
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the image of 746> commutes to p,_, px @ id and r. Recall from the preceding section that
the decomposition of (pr ® id)K,_ into irreducible subspaces with respect to #40° are
given by the projections Py ,¢q;. The subspace Py ,q;(pr ® id)K _ is non-zero iff dimy > 1
and |f| + 1 =/ =< k and is then equivalent to f ® y7- - - yy_yp ® f. As a result 7, (py) K.,
is irreducible if o + 14 and o = d ® J for some J € Irr %, and vanishes else.

Lemma 7.1. Let p., be the left ascending projection of a quantum Cayley tree.
Choose y € & with dimy > 1 and let my = M,, be the corresponding sequence of quantum
dimensions. Let a € Syeq be a coefficient of y. Then the commutator [a ® 1, p,.] vanishes on
(1 — P3)K, and there exists a real number C, > 0 such that

VkeN |la®1, p.)(pe ®id)|| < Camy".

Proof. For this proof we can of course assume that k is greater than 2. It is enough
to study p.i[a ® 1, p.i](pr ®1d) because [a @ 1, pui] = [a ® 1, pui]pus — pas[a @ 1, puy].
We will use the “extended target operator” &> : p,H ® H — H given by the product of S.
Denoting by a the map (C —H,1— Ay (a)) we have

Per[a® 1, pii] = pai (62 ®id)(a @ idk ) pat — P+ (62 ®id)(a @ idk)
= (6 ®id)(0 ® id)(pey)(id ® puy — 1)(a ® idg).

Hence it is enough to show that ||P(1 — P>)|| < m; !, where P, and P, are the respective

restrictions to p,H ® pxH ® p1H of (5 ®id)(pss) and (id ® ps+). These projections act

through the left representation of $®* on H ®3_ 5o that it suffices to look at their action on
=H,® H,® Hy, with ' € Z and |o| =

Let Higy), and H(,g, be the irreducible subspaces of H, ® H,, the latter being
possibly Vamshmg We let p,, e M (S ® S) act on any representatlon space of S® S.
The image of P, is then H, ® p..(H,® H, ), whereas the image of P; is the sum of
Ly = pui(Hyoy), ® Hy) and L = p.(Hygy @ H,). Let us first consider the case
when o is not of the form - - -0 for any 0 € . Notice that we are automatically in this
case when dimy =1, because we restricted ourselves to the values k = 2. The co-
representation o can then be written as an irreducible tensor product a; ® oy, so that one has

L, = P*+((H (Y®u), ® H.,) ® H, )
= (ld ®p*+)(H(y®CX1)+ ® (H“Z ® HV/))

< Hy ®H, ® P*+(Hocz ® Hy/) = Hy ® P*+(Hoc ® Hy’)a

and similarly L_ < Im P;. In this case we therefore have (1 — P,)P; = 0. One can check in
the same way that it is also the case when the geodesic from 14 to o does not start in the
direction 7 or does not end with the direction 7’.

Therefore it remains to consider the situation when p is the generator of some
copy of A,(Q) or 4,(Q) in S, and o =7%y---9, 9" =y;. In other words we have
H,® H, ® H, = Hj i, with the notation of Lemma 2.5. Let us notice first that L is the
unique irreducible subspace of Hj i 1 which is at distance k 4 2 from the origin l¢, and is
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therefore included in (id ® p.+)(Hi r,1). Hence it suffices to consider the restriction of P
and P, to the copies of Hy in Hj k1. We are then exactly in the situation of Lemma 2.5,
with k&’ =1, G; = Im P; and G, = Im P,. Because we are looking now at morphisms be-
tween irreducible subspaces, we can finally use the lemma to write

(1= P)Py> =1 —[|P2P1||* = mi 2. O

Remarks 7.2. (1) Let (my),, (my), be two sequences of quantum dimensions asso-
ciated to two directions y,y’ € Z. If m{ = my, it is easy to check by induction, using Point
(4) of Lemma 2.1, that my_  /my = my1/my:

/ r / / / /
my_my — myymy, = (my — my)mymy, + (mymg_y — mgmy_ ) = 0.

In particular we have m; = my for all k. If m; is minimal (resp. maximal) amongst the
M, with y € & and dimy > 1, we will call (), the minimal (resp. maximal) sequence of
quantum dimensions for (S, py).

(2) It is clear from the proof of the lemma that [p,.,a ® 1](px ® id) vanishes as
soon as k = 2 if a is a coefficient of some y € & with dimy = 1. Let us prove now that
the result of the lemma holds in fact for any ¢ € & < Siq if one uses the minimal sequence
of quantum dimensions to state it. To see this, assume that a satisfies the inequalities of
the lemma and let u be a coefficient of a corepresentation y € Z. Because the algebra
& is spanned by such coefficients, it is enough to prove that au also satisfies the
same inequalities for some other constant C,. We remark that (¢ ® 1)(pr ® id)K is
included in (pr—1 ®1d)K + (pr+1 ® id)K, so that one can write, using the inequalities
My = My = MMy

llau® 1, posl(p @) < (@ ® D ® 1, pos](pre @ i)
Flla® 1, pos ) ® 1)(pe @ id)|
< llall Com" + ull Culmc ! + m )

< (llall Cu+ (my + 1)l|ul| Ca) i

(3) The lemma also admits the following generalization. If we put

Por = (Pr ® pr)0(pr+k) as in Remark 4.8, we have for any coefficient a of any y € ¥
and for any k,k’ € N*:

nyr—q
16 a® 1,2, ® per)l| = Cay | —————
(16) I Ao ® poll = Coy [ ==

where (my) is the sequence of quantum dimensions associated with y. Moreover
la®1,2..](py ® pp) can only be non-zero when oo =7y---7, and f =y, - Y @
with k” = 1—we have then k" = k” + |p’|. Notice that in this case M, = my, and the sub-
object & = o ® f with maximal length is 7+ - - 7 » ® B, so that M/ Ms equals my» /mypr,
which is less than m /m5. We will use these facts in the proof of Theorem 8.3.

To prove (16), one considers like in the proof of the lemma intertwining projections
in H,® H, ® Hy: the complete statement of Lemma 2.5 gives then the result with
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Myn—1/Miir—1. But this quotient is less than miy_;/my -1, because the sequence
(myr—1/Micpr—1); 18 non-decreasing for every k: compare myr_1myp and mygr—1my: by
considering the irreducible decompositions of Hy:_1 x1x and Hjx—1 i relative to the ap-
propriate 4,(Q) or A4,(Q).

(4) Using the same starting point as in the proof of Lemma 7.1, we can prove
the following result: if a € ¥ < S;eq is a coefficient of the corepresentation o € Irr %, and for
any f € Irr 4, we have apgH < ) {psH |0 < o ® f}. As a matter of fact one can write,
using the notation of the proof, psaps = p;6>(a ® pg) = 20(ps)(a @ pg). But a lies in p, H
by assumption, hence the considered product vanishes if 6 ¢ o ® . Similarly, one can
check that (¢ ® 1)740°(pg)K is included in the sum of the 740°(ps)K Withd c « ® f ® .
These ‘“‘propagation properties” will in particular be used in relation with the fol-
lowing elementary fact: if H =@ pH = @ gH are orthogonal decompositions of H,
and if f e L(H) is an operator such that Card {¢q|pfg +0} < N for all p, one has
I/l < VNsupllfgll. O

Theorem 7.3. Let S be a Woronowicz C*-algebra and py a central projection of S
such that UpyU = p; and pop; = 0. Assume that the classical Cayley graph & of (S, p1) is a
directional tree. Let us denote by ¢, _(a) the operator p,_(a ® 1)p._, for any a € Sreq.

(1) Let{ e (p ® p1)Ki— anda € & < Siea. The sequence (Rp, _(a)r")  converges in
K, to a vector which only depends on R{ and which we denote by 7, (a)(R().

(2) This defines a x-algebra morphism n., : & — L(K,) which extends by continuity
10 Stied.

Proof. Let a be an element of & < S;q. There exists an integer p such that ¢ can
be expressed as a sum of coefficients of corepresentations f € Irr @ with || < p. We will use
in this proof the finite propagation properties of @, see Remark 7.2.4, with respect to two
decompositions of K. The first one is simply given by the projections (p; ® id), but the
second one is a little bit more subtle. Using the notation of Remark 6.4.2, for ky € N and
[ e N* we denote by Oy, the sum of the projections Py ,qi,p+— With (f,7) € .# and
5| = ko. In other words, the S-subspace (pjix, ® id)Ox, /K is the sum over (f,y) < .7,
|B| = ko, of the irreducible subspaces f ® 02 @ f = (Ppowy @ P, ) K4 —, where oy = -y,
as usual. In particular Qy,; commutes to r and we have RQx, 1 = O | R, if Q)7 , is the sum
of the projections 7 ( Psoom® /;).

We first want to bound from above the norm of the commutator €, = [p, _(a),r] on
each subspace Qy, /K. Because S ® 1 commutes to ®, and using Proposition 4.3, we see
that the operator p,_(a ® 1)p,_Op,_ equals p,_Op.,(a® 1)p,_. We subtract and add
this quantity from ¢, and force the apparition of the commutators of Lemma 7.1:

C=pr(@®)p+-Op, —p, Op, (a@1)p;
=-—pi-(@®1)p-_Op,_ +p, Op, (a®1)p;
(17) =p+-[a® 1, prlp-—Opi —pi - Opi[a®]1, pi]pi-.

Thanks to Remark 6.4.2, the norm of p__O®p,_ on (pi ® id)Qy, /K is the same as the
one on (pi_k, ®1d) Qo K, which is given by Lemma 6.3:
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MiM;

. 2 < MMt
(18) 1p—-Op+—(pr ® 1d) Oy il|” = PP
where (my), and (My), are the minimal and maximal sequences of quantum dimensions
from Remark 7.2.1. We proceed in the same way for the second term of (17), but this time
we have to consider the restriction of p, ®p., to the subspaces (pi ® id) Ok K that
meet the image of (¢ ® 1)(px ® id)Qy, ;- Remark 7.2.4 provides control over the set of in-
dices (k', ky,!") to be considered, and the fact that quantum dimensions are increasing with
the distance to the origin shows that the greatest value of the quantity (18) is obtained when
(k' kg, l") = (k — p,ko + p,I + p). Putting this together with the estimate of Lemma 7.1 we
get

. C M M, Ca ko1
1€a(pr ® id) Qg il <25 L < o
My \| Mye—jg—2p+1Mk—ky—2p mj;

Notice that we have used the inequality my_; = mkml‘i and introduced a new constant

Cy k,,1 to obtain the estimate order m,;z.

Now we consider a vector (€ (px ®1d)Qx, K, for fixed integers k¢ and /. To
prove that the sequence (Rg +_(a)r”§) converges, it is enough to study the series
(3" Rp._(a)r™™'( — Ry, _(a)r"(), which can be written as (- RE,r"{). Because the vector
€.l = [p,_(a),r]r"{ belongs to the direct sum of the subspaces (pjiniir1 ® id)K,_ with
€ [—p, p], we have

n n 2 +1
IRC,C|| < (2p + D)||€"¢| < P

Ca ko, 11IC]I-

k+n

Now we have my, = k 4+ n+ 1, hence the series <Z my +n) is convergent and the sequence

(R, _(a)r"¢), indeed converges in K,,. If R( = R’ with {' € (pp ® id)K,_ and k' 2 k,
we have (' = e ~k¢ by injectivity of Ry, hence the associated sequences are equal up to an
index shift.

We moreover get an estimate on the norm of ||z, (a)RQx, ||: denoting by (p;); the
sequence of remainders of the series (3 m; %), we have

(19) 17200 (@) (RC) = R, _(a){]| = Cy,1(2p + Dl
hence  [|7o, (@) (RO)|| = (2p + D) ([lall + Ca,xy.100) IE]]-

If we let k£ go to infinity without changing R{, the norm of { converges to || R{|| and we get
the upper bound ||7zoo(a)Qk0 A= @2p+1)|lal. We ﬁnally use Remark 7.2.4 to notice that

+_(a)O,, 1K is included in the sum of the (2p + 1) subspaces {Qp,+ip,i+;K | io and
zo + Jj €[-p, p]}. As a result the same property of “finite propagation” is true for 7, (a) in
the decomposition Ko, = €D O, K., and we obtain the inequality |7 (a)|| = (2p + 1)?lal|.

Let a,d e <Seq and RplekK, By Remark 7.2.2, the norm
| (ps_(a)p,_(a') — g, _(ad"))r ”CH tends to zero as n goes to infinity. By definition of Moo,
the norm || (7o (b)R — Ry, _(b))r"¢||, with b = a,a’ or aa’, also tends to zero. As a result,
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we see that || (7 (a)ms(a') — mc(aa’)) Rr"C|| converges to zero with respect to n. But this
quantity does not depend on n, and hence we have proved that 7., is a morphism of
algebras.

In particular, it is enough to prove the identity 7, (a*) = 7, (a)” for the coefficients a
of any y € 2. We have then ¢, _(a)(piin ® 1d)K < (prins1 @ 1d)K + (prin—1 ® id)K. Let
R{, RE € K, we can assume that { and ¢ both lie in some (p; ® id)K _ and we write

(m0 (a*)RC| RE) = lim(Rp,_(a)"r"¢| RE)
= lim(p,(a)"r"C[r"'E) +lim(p, (a)'r"C | 1€)
— im("C gy (@)r"E) + Tm (7 |, (a)r")
= lim(R¢| Rp, _(a)r"€) = (RC| 7 (a)RE).

Finally, let us notice that if the “propagation length’ of a € ¥ is p, the one of a” is at
most np, so that ||z, (a)"|| £ (2np + 1)*|ja||” for any n. In particular when [|a|| < 1 in Sgq
this proves that (3" || (a)"||) converges, so that the spectral radius of 7, (a) is less than or
equal to 1. If a is moreover hermitian, so is 7, (a) and we get ||z, (a)|| = 1. Hence
Ty 1 S — L(K,) is continuous when . is equipped with the norm of Sieq. [

Remark 7.4. In the case when M, # 2 for all y € &, the proof of the theorem can be
simplified. More precisely, it is enough to use in (17) the evident upper bound 1 for the
norms of p__®p,_ and p,_Op, —and in particular there is no need to introduce the
projections Qy, ; anymore. As a matter of fact, the inequality ||€,(px ® id)|| < 2C,m; ! is
sufficient for the rest of the proof because the series (Z m,;l) is geometrically convergent in
this case. []

8. Applications

8.1. Property AO. In this section we will denote by 4 and p: S — L(H) the left
and right regular representations of a Woronowicz C*-algebra (S,0), i.e. p(x) = UA(x)U.
They commute and therefore define a representation (4, p) of Sred ®max Sred 00 H. Besides,
we will call A® p the natural representation of Sieq ®pmax Sred 0N H ® H, so that
(l ®l)) (Sred ®max Sred) = Sred ® Sred- Let 7: L(H) - L(H)/K(H) be the qUOtient map.
We say that (S,0) has Property AO, after Akemann and Ostrand, if 7 o (4,p) factorizes
through Sieq ® Sieq.

When the antipode of (S,d) is involutive, it is easy to see that (4,p) od contains
the trivial representation &. Hence in this case (4, p) factorizes through Sieq ® Sreq iff (S, 0)
is amenable. Consequently, Property AO is only interesting for non-amenable Kac-C*-
algebras and can be seen as a restriction on their non-amenability.

Property AO was first introduced in [1] to study the non-nuclear C*-algebra
S = C*(F,): it was used in this case to show that Sieq ®max Sred/Sred ® Sred ~ K(H).
This result was generalized to reduced C*-algebras of ICC discrete groups in [15], where
Property AO was also used in conjunction with Property T of Kazhdan to produce non-K-
nuclear C*-algebras. More recently, Property AO was used in [12] in conjunction with local
reflexivity to produce solid factors.
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The aim of this section is to prove Property AO for the free quantum groups (.S,0)
studied in this article. We will use the original method of [1]: the factorization of 7 o (4, p)
arises from an isometry F : H — H ® H such that F*(1® p)(x)F = (4,p)(x) mod K(H),
for any X € Sted ®max Sted- In the case of F,, the isometry F is the polar part of the closable
operator which maps each characteristic function 1, € H to the sum of the 15 ® 15, with
p1p> =a and |f,]| + |f,| = |#|. In particular, the adjoint of this operator coincides on
A ® A with the natural extension &%, of E;p,.. In the quantum case, we also define F'
from this extension.

Definition 8.1. Let S be a Woronowicz C*-algebra and p; a central projection of
S such that Up; U = p; and pop; = 0. Assume that the classical Cayley graph & of (S, p;)
1s a directional tree. Let & : # ® # — H be therperator induced in the GNS construc-
tion by the multiplication of S, and 2, = > € No(pr1«)(pk ® pir). We define the closed
operator Fy by Fy = 6,7, and we denote by F its polar part.

Lemma 8.2. We use the hypotheses and notation of Definition 8.1. We suppose that
M, %2 for all y e 9. For every k € N* we have then | Fopll* = k + 1, and there exists a
constant C > 0 such that

Voo elir4 o €« 2@ a = |||Fops||® — |Fopal| £ C.

Proof. We know from Proposition 4.7 and Remark 4.8 that Fj is a multiple of an
isometry on each subspace p,H, the corresponding norm being given by

My M,
(20) HFopauz:z{—‘j;l .
o

5 < By ® o B1] + 8ol = \a\}.

Each term of the sum is clearly greater than or equal to 1, and there are |«| + 1 terms in the
sum: one obtains the admissible pairs (S, #,) by following the geodesic from 14 to o until
an arbitrary point f;, and then using the remaining sequence of directions to go up from lg
to f3,. Recall from Lemma 4.4 that the conditions for a sequence of directions to define an
ascending path are only local.

To get the second estimate, let us consider an inclusion o' = y ® o with y € Z. By
exchanging « and o' if necessary, one can assume that |a'| > |«|. As a first step, we will
assume that o = py---7; and &’ = yyy - - - ;. We can moreover suppose then that i = 2, and
hence dimy > 1. Let (my;) be the sequence of quantum dimensions associated to y, by
hypothesis we have my ~ a**!/(a —a~") for some a > 1. We write then

mpmy al My Mg
fi = |Fops|” = — = —
i H 7” k+§:[ m; m; ktki—i ak ak' 9

and similarly ||F0p“/||2 = fi+1. But by a variant of Cesaro’s Lemma f; is equivalent to
a(i+1)/(a—a'), and in particular (f;;1 — f;); is bounded. We take C to be a common
bound for these sequences when y varies in .
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We address now the general case and express o as a tensor product y---7; ® d,
where a does not start with 7, and possibly i = 0 or & = 1¢4. We have then M, = m;Mj;
and M, = m; 1 M;. Let us first consider the terms in (20) where |f;| > i. One has then
My, = miMy for some B, hence Mp Mg | M, = M; Mﬁz/ M;. If we consider similarly in
the expresswn (20) for ||Fopy||* the terms where |ﬁ1| >i+1, we see that My = m; . My
and Mg Mp, /M 1= M; M/gz /Ms. Hence all these terms can be simplified from the d1f—
ference ||Fopy|® — ||F0 p1|| We proceed symmetrically with the terms of (20) where
|f1] =i (resp. i + 1): this time 5, can be expressed as an irreducible tensor product £, ® @,
the factors Mj disappear from the quotlent My, Mﬂz /M, (resp. M,/) and one recognizes f;

(resp. fi+1). As a result we have ||Fopy||> — | Fopa||* = fir1 — f; and the first step gives the
desired upper bound. []

Theorem 8.3. Let S be a Woronowicz C*-algebra and py a central projection of S
such that UpyU = p; and pop; = 0. Assume that the classical Cayley graph & of (S, p1) is a
directional tree and that M, 2 for all ye . Let F : H — H @ H be the isometry of Def-
inition 8.1. Then

F*(2® p)(x)F = (2,p)(x) mod K(H),
Jfor any x € Sred ®max Sred- In particular (S,0) has Property AO.

Proof. By symmetry one can assume that x =a ® 1 with a € Sq a coefficient of
some y € . We put G = (F; Fy) 2, so that F = FG. We have then

aF* —F*(a®1) = G[G ", alF* + G& [P, ,a® 1].

By the ﬁrst statement of Lemma 8.2, the operator G is compact. Hence it suffices to prove
that [G™!,a] and &[#,,,a ® 1] are bounded.

For the first commutator, we remark that ap, = (py + pyr)ap, if y@ o =o' @ a”.
Moreover we have Gp, = ||Fop,|| ' ps, so that

(G, dlpy = (||Fopx|| = || Fopal) paps + (| Fopsrll — | Fopsll) parapa.

Hence the result follows from the second statement of Lemma 8.2, after factoring out
| Fopar|| + || Fop,|| from it. (In fact this even proves that [G~!, d] is compact.)

For the second commutator, we will assume that dim y > 1: otherwise the proof is as

easy as in the classical case. Denote by (m), the sequence of quantum dimensions asso-
ciated with y. We use the Remarks 4.8 and 7.2.3 to write

| Pa62[ Py a ® 1”|

< Sllpsa(pp, ® pp)I” X [[2es.a” @ 1(pp, ® pp,)II°

myg m mg | C, 1
< C Z |81 B 1821 _ a Z My g_1.
My My 117y mlxlm\“\—1k=0

k+1
. . a
The last upper estimate is bounded because ny;, ~ rforsomea >1. O
4 a
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Remark 8.4. Recall that 4,(Q) is never amenable and that 4,(Q) is amenable iff
n = 2 [5]. Hence the only case, up to free products, where Property AO is neither trivial nor
proved by Theorem 8.3, is the one of 4,(I»). Property AO may however be fulfilled in this
case, too. []

8.2. KK-theory. The notion of K-amenability was first introduced by Cuntz [7] for
discrete groups: the aim was to give a simpler proof to a result of Pimsner and Voiculescu
[13] calculating the K-theory of the reduced C*-algebras of free groups. Cuntz proves that
the K-theory of the reduced and full C*-algebras of a free group are the same, and gives in
[6] a simple way to compute it in the full case.

Julg and Valette extended then the notion of K-amenability to the locally compact
case and established the K-amenability of locally compact groups acting on trees with
amenable stabilizers [8]. This includes the case of the free groups acting on their Cayley
graphs. To prove the K-amenability of a locally compact group G, one has to construct an
element « € KK (C, C) using representations of G that are weakly contained in the regular
one, and then to prove that « is homotopic to the unit element of KK(C, C). In [8], both of
the steps are carried out in a very geometric way. Moreover, it turns out that « can be in-
terpreted as the y element used to prove the Baum-Connes conjecture in this context [9].

We refer the reader to 2], [17] for details about equivariant KK-theory with respect to
Hopf C*-algebras, and we just recall the equivalent characterizations of K-amenability for
a discrete quantum group defined by its full and reduced Woronowicz C*-algebras S, Sieq:

(i) 1 e KK4(C,C) can be represented by a triple (E, 7, F) such that the representation
of S on E factors through Sieq.

(i) For every C*-algebra 4 endowed with a coaction of S,
[24] € KK(A X S, A Xpeq S) is invertible.

(iii) [4] € KK(S, Sred) 1s invertible.
(iv) There exists & € KK (Sred, C) such that 1*(«x) = [¢] € KK(S, C).

In this subsection we explain how to construct an element & € KK (S;eq, C) from the
quantum Cayley graph of a free quantum group. It is the natural quantum generalization
of the Julg-Valette element mentioned above. It has index 1, however further work is
needed to determine whether A*(a) = [¢].

Theorem 8.5. Let S be a Woronowicz C*-algebra and p, a central projection of S such
that Up,U = py and pop) = 0. Assume that the classical Cayley graph ® of (S, p1) is a di-
rectional tree and that M, % 2 for all y € 9. Then E>p., : K, — H and E>(Rs)" : K., — H
commute to the actions of Sieq modulo compact operators. In particular E, (p++ + (Rs)*)
defines an element o € KK (Sred, C) of index 1.

Proof. 1In this proof we will denote by p>4, the sum of the projections p; with
k = ko. We have E>p,, = E>p., and the target operator E; intertwines the actions of Si.q,
hence it is enough to prove that p,, commutes to S.q ® 1 up to compact operators. If
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a € Sieq 1s a coefficient of some y € &, this results directly from Lemma 7.1: because (m,:l)
is decreasing and py-apy vanishes as soon as |k — k'| & 1, we have

[P, a ® (e @1d)|| < Cam! = [|[pasa ® 1(pzi, ® id)|| < 2Cumy].

This proves that [p,.,a ® 1] is compact, and the general result follows because the co-
efficients a of the corepresentations y € & span the C*-algebra Sieq.

For the case of (Rs)" we will use the proof of Theorem 7.3. Thanks to the hypothesis
we can take into account the simplification of Remark 7.4: we avoid the use of the projec-
tions Qy,,; by taking for p; the remainder of (3" m;") instead of (3° m;?). Equation (19)
reads then

| (7o (@) R — Rpy—(a® 1)) (px ®id)|| < (2p + 1) Cupy.

We notice also that p, is again equivalent to a multiple of m; ! because (my) grows geo-
metrically. To conclude we use Lemma 7.1 and the fact that (¢ ® 1) commutes to ®: up to
a change of the constant C,, we obtain ||(7.(a)Rs — Rs(a ® 1)) (px @id)|| < Cam".
Summing over k > ko we obtain an inequality showing that (7. (a)Rs — Rs(a® 1)) is
compact:

| (mes(@)Rs — Rs(a ® 1)) (pzk, ®1d)|| < Capy,-

Finally E(pi+ + (Rs)") defines an element o € KK(Swed,C) of index 1 because
E,: K., — (1 — po)H is invertible by Proposition 4.7, as well as

P+t (Rs) Ky @ Koo — Koy

by Theorem 5.3, Proposition 6.2 and Theorem 6.5. []
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